

All Pairs Shortest Path Performance Measurements

Jérôme Chiabaut <u>chiabaut@nortel.com</u> March, 2008

> Foreword

- The premise is that all pairs shortest path is too expensive and time consuming
- This presentation show calculations of all pairs shortest path for two moderate processors
- We feel All Pairs shortest path is feasible on current hardware here is some data.

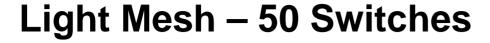
Platform	Core Duo	PowerQUICC	
Processor	Xeon® Processor LV 2.0 GHz (Sossaman)	MPC8548E (PowerQUICC III)	
Clock speed	2.0 GHz	1.0 GHz	
L2 cache	2 MB shared ECC	512 kB ECC	
Bus	667 MHz FSB	400 MHz	
Memory controller	Intel E7520 (Lindenhurst)	N/A	
Memory	2 x 512 MB of 400 MHz ECC DDR2 LC3	1 x 1 GB of 533 MHz ECC DDR2 LC4	
Operating system	Fedora Core 5 – 2.6.15- 1.2054_FC5smp	Linux mpc8548cds 2.6.11	
C Compiler	gcc version 4.1.0 20060304	gcc version 3.4.3 20041021	
C flags	-O3 -fno-strict-aliasing -mtune=pentium-m	-O3 -fno-strict-aliasing	

Topologies – Meshed Cores

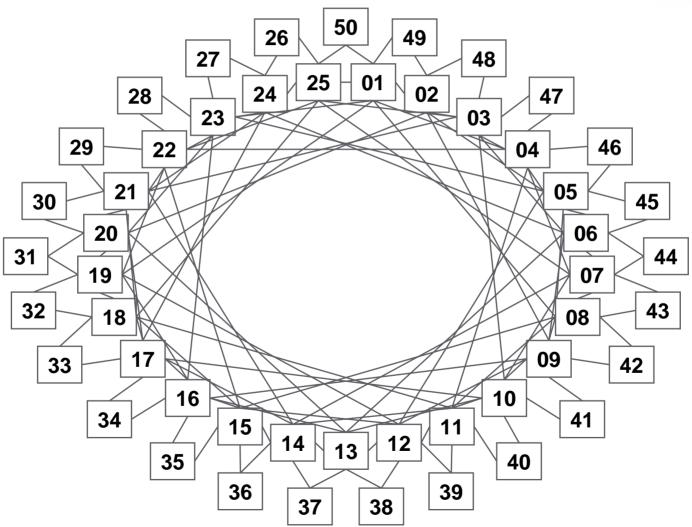
- > Topologies composed of a meshed core surrounded by dual-homed edges
 - Key parameters are the size of the mesh and the size and degree of meshiness of the core
- > Lightly meshed large cores
 - Size/2 core routers with 2(log2(Size)-2) trunks and 2 lines each
 - Size/2 edge routers dual homed (2 links)
 - Size*Log2(Size)/2 point-to-point links
 - Size of core routers' neighbourhood of core nodes grows a log(Size)
 - Network diameter increases very slowly with size (4-6 typical)
- > Fully meshed small cores
 - sqrt(2*Size) core routers with 2*sqrt(Size)-1 trunks and 2*sqrt(Size)-2 lines each
 - Size-sqrt(2*Size) edge routers dual homed (2 links)
 - 3*Size-5/2*sqrt(2*Size) point-to-point links
 - Size of core routers' neighbourhood of core nodes grows a sqrt(Size)
 - Network diameter is always 3

Topologies – Ring Hierarchies

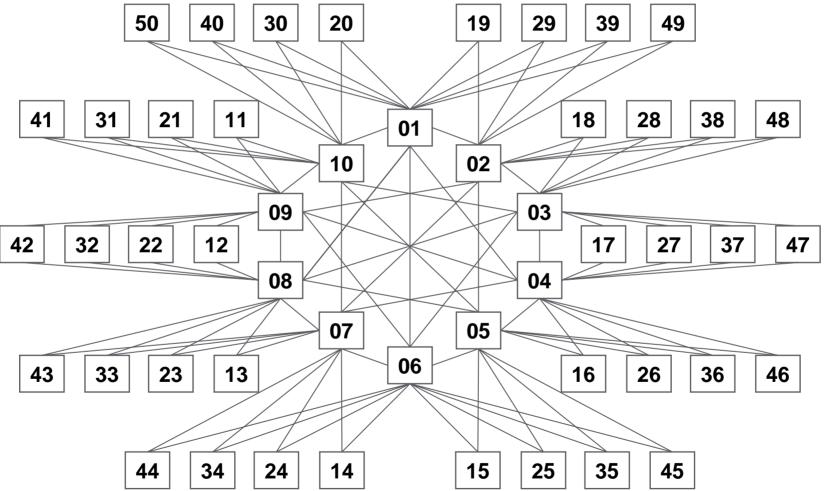
- > Topologies composed of a primary ring surrounded by dual-homed secondary rings
 - Symmetric point-to-point links with metrics between 1 and 9
 - The instance running the algorithm is the node with the smallest ID in the primary ring
 - Key parameters are the size of the primary and secondary rings and the number of secondary rings which is assumed equal to the number of nodes on the primary ring
- > Rings hierarchy
 - Primary ring with N nodes
 - N secondary rings with M nodes each
 - Two nodes in common between a secondary ring and the primary: each node of the primary ring is on two secondary rings
 - N(M-1) nodes and NM links in total
 - N and M vary between 5 and 15 (8 to 10 typical)
 - Very large network diameter (N/2+M-2)

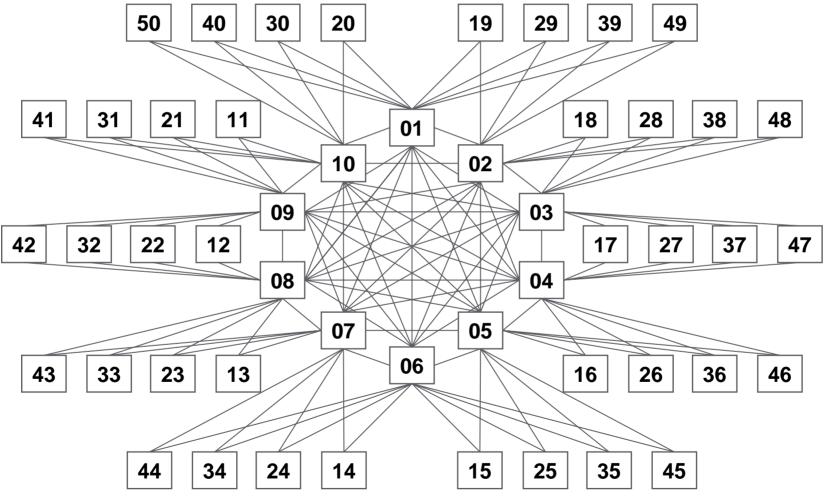

- > Topologies composed of a small core surrounded by dual-homed metro nodes surrounded by dual-homed edge nodes
 - Symmetric point-to-point links with metrics between 1 and 9
 - The instance running the algorithm is the core node with the smallest ID
 - Key parameters are the size of the core, metro, and edge
- > Two-Tier Hierarchy
 - N core nodes, fully meshed (except for N=2)
 - M metro nodes, dual-homed onto core nodes
 - L edge nodes, dual-homed onto metro nodes
 - L+M+N nodes and 2(L+M)+N(N-1)/2 links in total (2(L+M) for N=2)
 - L/M ~ M/N vary between 4 and 6
 - Small network diameter: 5 (4 for N=2)

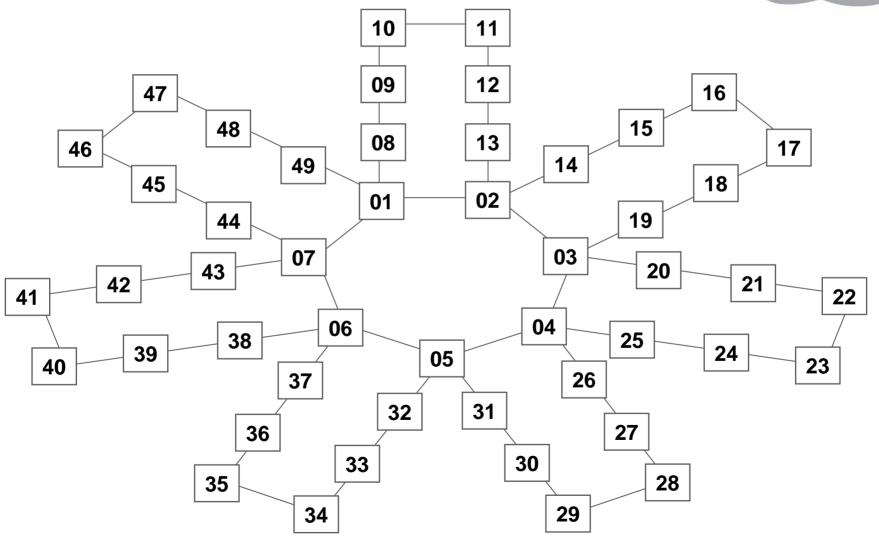
APSP Performance

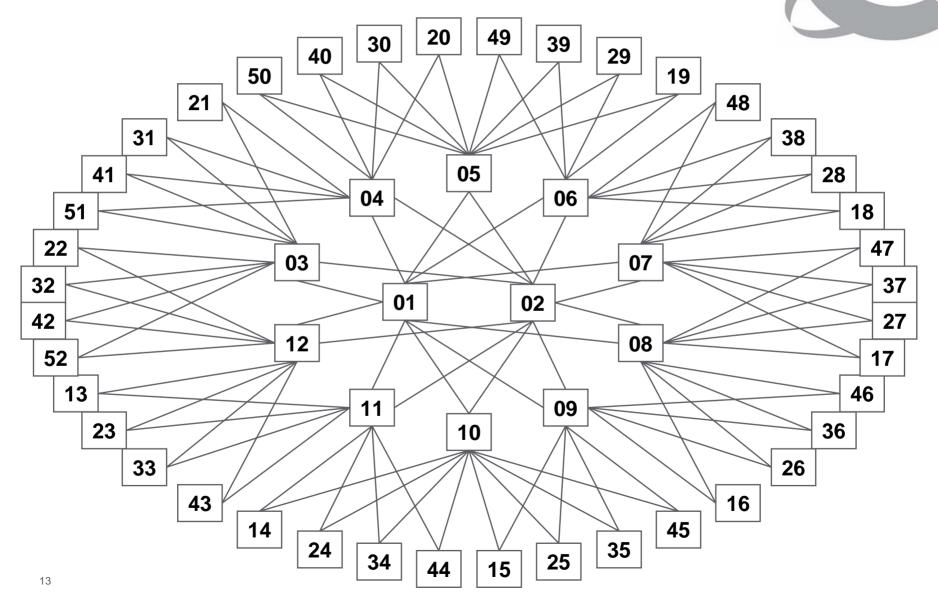

Topology	Nodes	Links	Neighbors	Diameter	Core Duo	PowerQUICC
Light mesh	50	125	8	4	0.40 ms	0.80 ms
Light mesh	98	300	10	5	2.50 ms	4.10 ms
Light mesh	200	700	12	5	15.2 ms	24.5 ms
Heavy mesh	50	105	13	4	0.40 ms	0.70 ms
Heavy mesh	98	217	19	4	1.70 ms	3.00 ms
Heavy mesh	200	460	28	4	7.50 ms	13.6 ms
Meshed core	50	125	17	3	0.30 ms	0.60 ms
Meshed core	98	259	25	3	1.30 ms	2.40 ms
Meshed core	200	550	37	3	5.60 ms	10.3 ms
Rings	49	56	4	9	0.20 ms	0.40 ms
Rings	100	110	4	14	0.80 ms	1.60 ms
Rings	196	210	4	20	3.60 ms	6.80 ms
Two-Tier	52	100	10	4	0.40 ms	0.60 ms
Two-Tier	100	198	11	5	1.90 ms	3.40 ms
Two-Tier	203	413	14	5	7.80 ms	13.5 ms

Backup Slides




Heavy Mesh – 50 Switches


Meshed Core – 50 Switches



Rings – 49 Switches

Two-Tier – 52 Switches

