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A prior note! described a neighbour to neighbour tree agreement protocol (TAP) that
ensures loop-free topology(ies) for one or more trees, each calculated by any protocol
capable of determining the Root Identifier, Root Port, and root path cost? for each bridge.
That protocol makes explicit root path priority vector promises to the bridge’s neighbours:
allowing interoperability between different topology protocols (each bridge’s promises are
comprehensible to its neighbour at all times) and maximizing the potential for connectivity,
but with the disadvantage of requiring per tree TAP messages. This note proposes a link
state protocol specific TAP design, with the promises for all trees represented by a brief
digest of the input to the link state calculation, enhancing scalability by substituting local
computation for per tree communication. Both TAP protocols might be used together in
bridging applications, with the per tree design just for the CIST to provide plug-and-play
interoperability between dynamically determined link state bridging Regions.

Concepts and terminology from the prior note are used, without reintroduction. Loop free
operation at all times is an absolute requirement—irrespective of the number of link state
updates in progress and the order of their arrival (or temporary non-arrival) and inclusion
in the link state computation at each bridge. If neighbouring bridges have a completely
different recent update history they will be unable to draw conclusions from each other’s
link state digests, and thus unable to create new safe connectivity, but the design enables
rapid Root Port failover® without any protocol exchanges in (at least) the common case of
a single link change. As an improvement over simply cutting the active topology whenever
neighbours’ link state differs, this is particularly effective in structured networks; and
essential if link state bridging is always to perform at least as well* as RSTP/MSTP.

Each bridge performs the link state calculation for itself and its immediate neighbours to
determine® its Port Roles for each tree; and records the value of the Contract that would be
implied by the transmission of that digest on each Designated Port and by its potential
receipt on the Root Port and each of the Alternate Ports. A Root Port is Forwarding if it
holds a received Contract and has not transmitted an outstanding Contract. A Designated
Port is made Discarding, prior to a newly calculated Root Port becoming Forwarding,
unless it has no outstanding Agreements and has received an Agreement for one of its
outstanding or potential promises with the value of the matching Contract and all
outstanding Contracts on the port being worse than that of the worst outstanding potential
Contracts on the Root Port. Otherwise the Designated Port is made Forwarding, unless the
Root Port is, and is to remain, Discarding. In that case the Designated Port is Forwarding
iff it has no outstanding Agreements and has received an Agreement for one of its
outstanding or potential promises.

Prior promises, both outstanding and received, are discarded when a matching promise
(digest) is received or calculated. The link state TAP PDUs convey a single digest, attesting
to the transmitter’s state and its prior application of any necessary filtering arising from
outstanding promises. Each participant can thus continue to forward using the last
synchronized calculation as a base, possibly adding some forwarding to reflect root port
failover for some trees and removing other forwarding to prevent loops, until it and its
neighbour agree on the same link state information once more.

ILink state bridging, Mick Seaman, 24th March 2008.
2All italicised terms are defined by IEEE Stds 802.1D and/or 802.1Q.

3See IEEE Std 802.1Q clause 13.6, and High Availability Spanning Tree, Mick Seaman, October 1998, see also A Framework for Loop-free Convergence, M.
Shand, S. Bryant, February 2008, section 5 (destinations of type A2, with asymmetric cost criteria).

4Successful introduction of an ‘improved’ protocol usually requires that it performs at least as well as that it seeks to better, particularly in common cases. This
note was prompted, in part, by a suggestion by Don Fedyk and others that used a link state digest but did not allow for protocol-less failover.

SEfficiencies are believed to be possible, so this does not add an amount of work equivalent to that for a single calculation times the number of neighbours.

Revision 0.6 July 12th, 2008 Mick Seaman 1


http://www.ieee802.org/1/files/public/docs1998/hasten7.pdf
http://www.ieee802.org/1/files/public/docs2008/aq-seaman-link-state-bridging-0508.pdf

Link state bridging part 2

1. Summary

This note begins by considering the protocol
interactions between three connected bridges,
following a single link state change, with a particular
emphasis on Root Port failover (section 2). Section 3
considers multiple changes: initially all bridges agree
on the input to the link state calculation (as is
evidenced by their agreement on the digest), but
during the course of updates each undertakes
calculations whose digest is not (and is never)
comprehensible to the others. Finally all agree on a
new digest, and convergence on the new topology is
complete.

Section 4 considers aspects of the link state TAP
design, in particular how many digests should be
allowed to be outstanding or should be held on receipt.

2. A single link state change

Consider three bridges, 101, 202, and 303 (say),
connected by point-to-point links (101 to 202, 202 to
303). Let a, b, c, .. represent the digests that reflect
states of the link state calculation input, e.g. inclusion
(or not) of particular LSPs. Table 1 shows each bridge
and bridge ports’ state (for some of the trees).

Table 1—Promises and forwarding with a single change

Step 0 1 2 3 4 5

101  State (digest) a a a a b b

101.2 Outstanding Promises a a a a b b

101.2 Received Promises a a ab ab b b

101.2 Forwarding a a a a b b

202.1 Forwarding a be be beb b*b b

202.1 Outstanding Promises a a ab ab ab b

202.1 Received Promises a a a a a b

202  State (digest) a b b b b b

202.2 Outstanding Promises a a a,b b b b

202.2 Received Promises a a a b b b

202.2 Forwarding a b*e be beb b*b b
LIl 18141

i 303.1 Forwarding a a a b’ b b

et 303.1 Outstanding Promises a a a b b b

303.1 Received Promises a a a,b b b b

303  State (digest) a a a b b b

Initially all three and other connected bridges, have the
same link state information, represented by digest a.
The fraction of the initial active topology supported by
the three bridges is the same for all the trees shown:
the Root is at or above 101, 202’s Root Port connects
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to another bridge, and 303’s Root Port connects
directly to 202. The Port States shown are just for
those trees whose Root remains at or above 101, with
202’s new Root Port (202.1) connecting to 101, and
303’s Root Port remaining unchanged (see prior note
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for network reconfiguration examples), but the link
state digests and promises apply to all trees.

In this scenario, 202’s link state information is updated
first (step 1), with new digest b, causing 202.1 to be
selected as the new Root Port for some trees. None of
the bridge’s have yet sent further TAP messages, and
(if the link state change is a result of 202’s local
detection of the prior Root Port’s link failure) it is
possible that no protocol exchanges have taken place
at all. However 202 can immediately modify its frame
Forwarding to include trees whose frames would be
forwarded if all nodes were using the link state
information identified by b, subject to the proviso that
the Contract previously received (for that tree) from
101 is better than the Contract previously agreed to by
303. This corresponds to the observation previously
made for RSTP/MSTP: if a Root Port is blocked, an
Alternate Port can be made Forwarding immediately
provided that spanning tree information was
previously synchronized through the active topology
encompassing the new connectivity. The Forwarding
state is shown as b??, i.e. forward using link state
information identified by b for each tree where the
Root Port’s received Contract a is better than that
agreed to by the Designated Port’s peer (a again).

In step 2, 202 transmits a fresh Agreement (to 101)
and Contract (to 303) for b. However 202 does not
withdraw its prior Promises, which is just as well, for
although 101 and 303 receive and record the Promise
for b, they have as yet no idea what b signifies.

In step 3, 303 has updated its topology with the
information for digest b (calculating b at the same
time). 303 knows that b is more recent than a, so it can
discard the received Contract for a, and send a TAP
message to 202 also promising Agreement b, it can
discard its outstanding promise for a immediately
(since 303 knows b was more recent than a, 202’s
Agreement for b means that it has no further use for
a—and the protocol (see Section 4 and 5) will ensure
that the discard is communicated to 202). Note
however that 303 considers its Agreement a to be
outstanding until it has received a subsequent message
from 202 discarding that Agreement. 303 is now
forwarding b>?  where the *?° represents the
Agreement(s) received at its Designated Port—either
‘a’ or ‘b’ (note bPP == b). 202’s forwarding is now
b2, . forwarding according to trees calculated
according to b, but omitting forwarding for which
101’s Contract a is not better than the Contract b
promised to 303.

In step 4, 101 completes its topology calculation with
the information identified by b. It too knows that b is
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more recent than a (having calculated both it knows
that b is as a, but with the inclusion of link state
updates with more recent sequence numbers), and can
discard the received promise for a. Since it has 202’s
Agreement for b, it can start forwarding using b alone,
and can also discard its outstanding promise for a.

In step 5, 101 sends Contract b to 202, withdrawing
Contract a and discarding Agreement a with the same
message. On receipt, 202 can remove a from its
forwarding and promise state.

The steps, and state information at each state, shown
in Table 1 is independent of the Port States of each
tree, and in this context the distinction between
Contracts and Agreements is immaterial and is not
explicitly encoded in TAP messages—there is no
particular disadvantage in requiring the appropriate
forwarding state to be established for all trees,
regardless of direction, prior to transmitting promises.

3. Multiple link state changes

Of course Table 1 represents the easy case, a single
change, in which a loop will not occur in any case.
Table 2 considers multiple simultaneous changes.
All bridges start with the same information (digest a,
step 0), but 101 updates to b, 202 to ¢, and 303 first up
to d, (step 1) before all the bridges reach e.

In Table 2 step 2, 202 acquires all the updates (digest
e) and transmits fresh promises. 202 knows that a was
intelligible to 101 and 303, since promises for a have
been received, but does not know their opinion of c—
it is possible that promises for c are in flight: so 202
does not attempt to decide which digests its
neighbours want to hold on to. Moreover 202 doesn’t
know which promises are to be used. Its frame
forwarding is represented as e®%2C: starting with the
forwarding connectivity of e, forwarding between a
tree’s Root Port and each of its Designated Ports is
removed if the worst of the Root Port’s Contract
calculated using the information sets a, e, and ¢ is not
better than the best of the Designated Ports Contracts
calculated using the same sets.

However, while 202’s promises for ¢ and e are both (as
yet) unintelligible to 101, the latter knows their order
of calculation by 202, and that e will in time supersede
c everywhere (until e is itself replaced). So the chance
of 202 being able to assign a meaning to c, by
receiving and processing the necessary link state
updates, before receiving and processing those for e is
small. Accordingly 202 discards the promise for ¢ (in
step 3), as does 303. Note that 101 does not know if b
and e are strictly ordered, and, if b represents more
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than two changes to a, does not know that b will not
supersede e.

Table 2—Promises and forwarding with multiple changes

Step 0 1 2 3 4 5 6
101  State (digest) a b b b e e e
101.2 Outstanding Promises a ab ab ab e e e
101 - -
2 101.2 Received Promises a a,c a,.e a.e e e e
101.2 Forwarding a b b b e e e
vh AV v
202.1 Forwarding a e A e e e
202.1 Outstanding Promises a a,c a,.c,e ae e e e
202.1 Received Promises a a,b a,b a,b e e e
:202 202  State (digest) a c e e e e e
202.2 Outstanding Promises a a,c a,ce a,e a.e e e
202.2 Received Promises a ad ad ad ad e e
202.2 Forwarding a e et et e e e
X
303.1 Forwarding a d*e d*e d*e d*e e’ e
; B 303.1 Outstanding Promises a a,d a,d a,d a,d e e
303.1 Received Promises a a,c ae ae ae e e
303 State (digest) a d d d d e e

In step 4, 101 completes a link state computation with
digest e, and has also received promises for e on its
other ports. 101 transmits a TAP message promising e
and discarding the received promise for a. It can also
discard its outstanding promises for a and b, since it
now knows them to be precursors of e (for which it has
a received promise). Receipt of 101’s promise for e
allows 202 to discard the received promises for a and
b, and the outstanding promise for a.

In step 5, 303 completes its link state computation
with digest e, and its change in state, transmission, and
and the consequent changes in 202 proceed much as
for 101/202 in step 4. Finally in step 6 the other ports
of 303 have also received suitable promises, and frame
forwarding for all three bridges proceeds using the
link state information corresponding to digest e alone.

4. Link state TAP design considerations

The fact that all digests are not necessarily intelligible
to the recipient of a promise means that the link state
digest based TAP differs significantly from that using
per tree distance vectors. Each promise does not
necessarily replace its predecessor. However each port
only needs to retain at most two received promises: the
last one whose digest matches a digest computed by
the recipient, and the last one received.The question is
whether the full state of the transmitter® should be
included in each message or not. This would require
including between one and four digests in each
messagez, and would allow two neighbours to sync up
on digest that is not necessarily their latest—enabling
new connectivity even as a reconfiguration is in
progress. On balance the benefit seems marginal®—

1Usually a sound principle in protocol design, though sometimes requiring the handling of more protocol fields than desirable.
2Allowing for a window rotation so that an issued digest can be replaced by its successor

3l have a design if it is wanted.
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both a loop free guarantee and a rapid protocol-less
failover to an Alternate Port can be provided by
communicating a single digest. Addition of a single bit
indicating if the transmitter has received the same
digest value might be worthwhile—as a diagnostic,
and allowing more rapid retransmission in the case of
message loss. Providing windowing or pacing of new
promises would be better done! by using multiple
digests, and a bridge’s forwarding has to take account
of all outstanding promises since the last matching
digest received from each neighbour. However the
latter can be easily achieved (and the requirement for
windowing avoided) by recording the worst potential
received or the best potentially issued Contract
outstanding for each port and tree? since (and
including) the last time a matching digest was
received, as well as values for the current topology.

5. TAP event handling

The events to be considered in the link state TAP state
machine design are:
— Availability of a new link state topology following

receipt or generation of an LSP and link state
recalculation.

—  Transmission of a TAP message on a port
— Receipt of a TAP message on a port.
The processing of each event specified in this section

is atomic, and is not interrupted by processing for any
of the other events.

5.1 TAP data

The following variable(s) are maintained for the
bridge as a whole:

— ownDigest: The value of the digest corresponding to
the last completed link state calculation.

The following variables are maintained on each port,
for each tree:

— latestRole: Designated, Alternate, Root, or Backup.
— latestContract: A priority vector.

— latestOutstanding: True, or False.

— priorRole: Designated, Alternate, Root, or Backup.
— chgdRole: True, or False.

—  priorContract: A priority vector.

— rcvdDigest: The last received digest.

For a Root, Alternate, or Backup Port the value of the
Contract is that (that would be) associated with the

digest by the port’s neighbour. For a Designated Port
it is the value assigned by this bridge.

Note—chgdRole is initialized False, so a digest match is required
before the port will become Forwarding.

5.2 New link state topology

Calculation of a new link state topology involves
determining not only the Root Port for each tree, but
also the value of the designated priority vector for the
neighbouring bridge attached to that port, and the
designated priority vectors for each of the other ports
and their attached neighbours (assuming in each case
that the neighbours are using the same link state
database to perform the calculation). This allows the
bridge’s ports’ Port Role (Designated, Alternate, or
Backup) and the value of the potential promise to be
determined for each tree.

The variable ownDigest for the topology is calculated,
using the data input to the link state calculation.

— latestOutstanding is set True; and
— latestRole is set to the calculated Port Role; and
— latestContract is set to the calculated priority vector.

If ownDigest matches rcvdDigest3:

— chgdRole is cleared, i.e. becomes False; and
—  priorRole is set to latestRole; and
—  priorContract is set to latestContract.

The new (and now current) link state topology is used
to assign Port Roles for the tree, and Port States are
assigned using the latestRole, priorRole, latestContract,
and priorContract variables (see 5.5).

A request for the opportunity to transmit a TAP
message is made. This may be granted immediately, or
not, depending on such factors as transmission rate
limiting, availability of buffers etc. Transmissions may
also be scheduled at regular intervals.

5.3 TAP message transmission

An opportunity to transmit a TAP message through a
port results in the following processing.

If latestOutstanding is False:

— If latestRole is Designated:
 |f priorRole is not Designated, chgdRole is set True.

e Otherwise, i.e. if priorRole is Designated,
priorContract is set to the better of the values of
priorContract and latestContract.

— If latestRole is not Designated:
 |f priorRole is Designated, chgdRole is set True.

ISafer, less complex protocol, easier to determine what is happening by observing the protocol.
2If the same port has potentially both issued and received and received a contract for the same tree through a given port, it has adopted both Designated Port

and Root or Alternate Port roles, and must be Discarding.

3t is handy to have a reserved or illegal value for the digest calculation, that can be used for ‘no digest received’, otherwise a separate flag should be supplied

to cover the case of startup (i.e. before any digest has been received).
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e Otherwise, i.e. if priorRole is not Designated,
priorContract is set to the worse of the values of
priorContract and latestContract.

—  The new (and now current) link state topology is used
to assign Port Roles for the tree, and Port States are
assigned using the latestRole, priorRole,
latestContract, and priorContract variables (see 5.5).

NOTE—If the above condition is satisfied when a new link state topology
is available (5.2), and an opportunity to transmit is expected immediately,
the Port States can be updated just once.

A TAP message is used to encode and transmit
ownDigest, and latestOutstanding is set True.

5.4 TAP message receipt

If the digest received in the TAP message does not
differ from the previously rcvdDigest, the received
message is discarded and requires no further
processing. Otherwise rcvdDigest is updated with the
received value, and if it now equals ownDigest:

— chgdRole is cleared, i.e. becomes False; and
—  priorRole is set to latestRole; and

—  priorContract is set to latestContract; and

— latestOutstanding is set True; and

—  The new (and now current) link state topology is used
to assign Port Roles for the tree, and Port States are
assigned using the latestRole, priorRole,
latestContract, and priorContract variables (see 5.5).

5.5 Port State assignment

A Root Port is made Forwarding if chgdRole is False.
If the Root Port is Forwarding, each Designated Port
whose chgdRole is False and whose priorContract IS
worse than the Root Port’s priorContract is made
Forwarding. All other ports are made Discarding.

6. Further thoughts

Since a link state digest only makes sense to another
bridge with exactly the same link state information,
the use of a digest rather than an explicit per tree
priority vector could reduce the opportunities to
restore communication during reconfiguration.
However that opportunity comes at the expense of
more communication, and it is only communication
delays that prevent two bridges having the same link
state information. So in general the difference is likely
to be arguable, if not insignificant, on this point.

More significantly perhaps, there is no way of
delaying cutting on a per tree basis when using a link
state digest to summarize the state for all trees, as there
is no way (without some per tree communication) to
indicate that the tree has reached root-ward agreement
or leaf-ward agreement  while  continuing
communication for some trees. The problem is that
there is no place to start such an agreement
propagation from in general—at the leaves of one tree
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we find ourselves in the middle of other trees. This
means that communication can be interrupted when
per tree agreement would allow a branch to drop (in
priority space) as a whole and postpone cuts until
requested (by a Proposal) so that new connectivity
could be made elsewhere.

Fast distribution of link state updates, as suggested in
the prior note, would probably make more difference
to overall reconfiguration times than complicating
TAP. If the CIST alone were to use per tree TAP, that
should make it maximally available, and if both ends
of a failed link can send the update before the two
parts of the CIST adjust that should ensure that all
bridges receive rapid notification of a single failure.

This note has concentrated on the advantages of
providing rapid Root Port failover (for example
Figures see the prior note). This is important in well
designed structured networks (e.g. on campus). In
simple rings the alternative proposed by Don Fedyk et
al. can be expected to do as well, and possibly slightly
better. Both approaches require a single message to be
sent by each node on each link (for a single
recalculation) but the more aggressive cutting in the
alternative means that only one message needs to be
received (through the new Root Port) to start
Forwarding towards the Root, and in a simple ring
repair after a failure either leaves the path to the Root
completely unchanged or causes a tree “flip’.

The description in this note deals with the general case
of bi-directional general trees where the destination
(or source) of the traffic is not at the root of the tree. It
can be trivially extended to the latter case, and to the
particular optimization of the latter case when it is
only forwarding through the Root Port that is enabled
or disabled—nbut that has not been done yet.

The approach taken in this note is to adopt very simple
rules for avoiding loops, with those only involving
local checking. A more complex analysis of the entire
topology could find more loop-free paths for
immediate use after a failure, but the requirement that
an arbitrary number of changes can be in progress at
any one time is a tough one. | have avoided using any
method that would require a worst case fall back to a
method that provided an in sync base-line for the
entire network.
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