Time Stamp Accuracy needed by IEEE 802.1AS

Geoffrey M. Garner SAMSUNG Electronics (Consultant)

IEEE 802.1 AVB TG 2009.01.06

gmgarner@comcast.net

Introduction

- ☐ This presentation provides
 - A statement of the time stamp accuracy needed by IEEE 802.1AS
 - Background for this requirement
- □Some of the material in this presentation has been presented previously, in somewhat different form, in Reference 1

Summary Statement

- □IEEE 802.1AS needs the following time stamp accuracy
 - ■Transmit time stamp error $\leq e_T$
 - Receive time stamp error ≤ e_R
 - $e_T + e_R \le 48 \text{ ns}$
 - 802.1AS does not care what the precise values of e_T and e_R are, as long as
 - whatever values are chosen apply to all PHYs
 - their sum does not exceed 48 ns
- ☐ The above is illustrated schematically on the next slide

Reference Points - 1

- ☐Time stamp measurement point:
 - •point in the protocol stack where the time stamp measurement is actually made
- □ It is desired to make the time stamp measurement at the interface to the medium
- point is not at the interface to the medium, the difference between the time stamp measurement point and the interface to the medium may be measured in advance
 - •this is the known portion of the difference between the time stamp measurement point and the interface to the medium

Reference Points - 2

- ☐ The time stamp measurement is then corrected by this known portion of the difference between the time stamp measurement point and the interface to the medium
 - Note: for time synchronization, only the difference between the transmit and receive time stamp corrections is needed
 - •The individual transmit and receive corrections may be needed for other purposes, e.g., measurement of link propagation delay
- ☐ The unknown portion of the difference between the time stamp measurement point and the interface to the medium is the uncertainty
 - $\pm e_T/2$ transmit time stamp measurement uncertainty
 - $\pm e_R/2$ = receive time stamp measurement uncertainty
- \Box e_T and e_R must be specified such that
 - they have fixed values
 - their sum does not exceed 48 ns

Reference Points - 3

- □ From the figure on the previous slide, the maximum asymmetry, i.e., maximum difference between the latency for transmission from station A to station B and the latency for transmission from station B to station A, is $\pm (e_T + e_R)$, or ± 48 ns
- ☐ The time error due to this asymmetry in latency in the two directions is one-half the asymmetry
 - ■i.e., $\pm (e_T + e_R)/2$, or ± 24 ns
- □Note that the error for an actual PHY may be fixed (but unknown) or time varying

□The time stamp accuracy requirement was arrived at by looking at the end-toend network time synchronization requirement for Audio/Video Bridging (AVB), the AVB reference model, and the sources of time synchronization error

□AVB reference model

- Synchronization is transported over a maximum of 7 hops
 - •This includes both bridge-to-bridge and bridge-to-end-station hops (see below)
 - •This is a long-standing assumption for AVB, based on expected applications
 - •See the master list of AVB assumptions [2] for more detail and background

□ Desired PTP (i.e., 802.1AS) clock quality

- ■End-point time synchronization accuracy for steady-state operation is 1 μ s or better (i.e., ± 500 ns) over 7 hops
 - •i.e., any 2 PTP clocks separated by at most 7 hops differ by no more than 1 μs
- ■This assumption is based on requirements for digital audio in AES11-2003 [4] (the assumption is restated in [1])
 - •AES11-2003 is a specification of the Audio Engineering Society, for synchronization of digital audio equipment for high-quality audio applications
 - •The ± 500 ns synchronization requirement is intended to guarantee acceptable phase alignment of audio signals from multiple speakers in a room
 - -"living room quality" audio, which is better than "telephone quality"
 - •To achieve this, AES11-2003 requires that the time synchronization error be within $\pm 5\%$, or $\pm 18^{\circ}$, of the AES3 (i.e., digital audio) frame (see section 5.3.1.1 of [5])
 - –For the 96 kHz frame rate, the time synchronization must be within ± 500 ns (see section 5.3.1.1 and Table 2 of [5])

☐ Assumptions on local oscillator quality

- ±100 ppm or better free-run accuracy
- ■Rate for local oscillator is nominally 25 MHz
- ■Crystal frequency drift ≤ 1 ppm/s (note that [2] gives 4 ppm/s, but other recent discussions in the AVB TG have used 1 ppm/s)

□Sources of time synchronization error

- a) Phase measurement granularity, due to 40 ns granularity of local oscillator (note: a higher frequency oscillator is allowed, but not required)
- b) PHY latency and fiber latency asymmetry
- Accumulated phase error due to local oscillator frequency drift between phase measurement updates
- d) Granularity of measurement of nearest neighbor frequency ratio
- ☐ It is shown in Reference [3] and references cited there that the effect of (c) is negligible, i.e., is less than 1 ns, for the assumptions on crystal drift rate (see previous slide) and Sync message rates
- It is planned to use 32 bits to express measured frequency offsets, resulting in maximum frequency error of 2.3×10^{-10} ; therefore, the effect of (d) is negligible for inter-Sync message times of 1 s or less
- ☐ However, the effects of (a) and (b) are not negligible

- **□**For a maximum time synchronization error of 1 μ s (i.e., ± 500 ns) over 7 hops, an error of ± 500 ns/7 = ± 71 ns per hop would be allowed in worst case
 - ■This is for a worst-case condition, e.g., when the errors are static, or are slowly varying and beat slowly against each other
- ☐ The 40 ns phase measurement granularity results in a maximum latency measurement asymmetry of ±40 ns
- ☐ Then, the allowable error due to asymmetry due to PHY and fiber latency is ±31 ns/hop
- \Box If a 10% margin is desired, i.e., \pm 7.1 ns/hop, then the allowable error due to asymmetry due to PHY and fiber latency is \pm 24 ns/hop
- ☐ This means that $\pm (e_T + e_R)/2 = \pm 24$ ns, or
 - $e_T + e_R = 48 \text{ ns}$
- □In other words
 - \pm [(500 ns/7) 40 ns 7.1 ns] \cong \pm 24 ns left for uncompensated PHY plus fiber asymmetry

References

- 1. Geoffrey M. Garner, Assumptions for Sources of Time Synchronization Error in IEEE 802.1AS, Rev. 4, prepared for January 5, 2009 802.1AS call.
- 2. Don Pannell and Michael Johas Teener, *Audio/Video Bridging (AVB) Assumptions*, July, 2008 Denver, CO (annotated Sept 2008 Seoul, Korea) (available at http://www.ieee802.org/1/files/public/docs2008/avb-pannell-mjt-assumptions-0908-v17.pdf).
- 3. Geoffrey M. Garner, Sources of Time Synchronization Error in IEEE 802.1AS, April 29, 2007 (available at http://www.ieee802.org/1/files/public/docs2007/as-garner-error-sources-time-synch-0407.pdf).
- 4. AES11-2003, AES Recommended Practice for Digital Audio Engineering Synchronization of digital audio equipment in studio operations (Revision of AES11-1997), Audio Engineering Society, Inc., 2003.
- 5. AES3-2003, AES Recommended Practice for Digital Audio Engineering Serial transmission format for two-channel linearly represented digital audio data (Revision of AES3-1992), Audio Engineering Society, Inc., 2003.