Declaration,

Propagation and
Bandwidth Allocation

- — g —

Craig Gunther (cgunther@harman.com)
24September2008 (updated 150ctober2008)

Topics

MSRP Attribute Propagation
Triggers for Bandwidth Reallocation
Bandwidth Allocation Algorithm
Listener Attribute Propagation
Qat/Qav - What runs where?
MSRPDU Talker Attributes

MSRP Attribute Propagation

MSRP Attribute Propagation

SR Station - Talker SR Station - Listener
Host Application Host Application
REGISTER_STREAM(StreamID) REGISTER_STREAM(StreamID)
MSRP Participant * MSRP Participant
MSRP MSRP
(MRP Application) (MRP Application)
MAD_Join.request(TalkerAdvertise) MAD_Join.indication(TalkerAdvertise)
MAD MAD
(MRP Attribute (MRP Attribute
Declaration) Declaration)

MSRPDU MSRPDU

{

< PHYSICAL MEDIA (CAT-5e) Q

24 September 2008 IEEE 802.1 Interim - Seoul

Presenter
Presentation Notes
I have drafted Qat using wording similar to 802.1ak (e.g. REGISTER, DEREGISTER, Service Interfaces, etc).

The StreamID that the Talker is registering causes a notification to be sent to the Listeners Host Application. This is different than MMRP/MVRP since those MRP applications only send MRPDUs into the network, there is no “Listener” end-station that receives the registrations from the network.

Remember: TalkerAdvertise declarations are only describing the Stream contents, they are not the actual streaming data.

Bridge MSRP Propagation

SR Bridge

Host Application

REGISTER_STREAM_ID(StreamID)

MSRP Participant

Host Application

REGISTER_STREAM_ID(StreamID)

MSRP Participant

< PHYSICAL MEDIA (CAT-5e) <>

24 September 2008

MSRP ngfi‘r‘]’g 2 MSRP
(MRP Application) Forwarding (MRP Application)
MAD_Join.indication(TalkerAdvertise) ‘ ‘ MAD_Join.indication(TalkerAdvertise)
|
MAD MAP MAD
(MRP Attribute] (MRP Attribute [(MRP Attribute
Declaration) i Propagation) : Declaration)
MAD_Join.request MAD_Join.request
(TalkerAdvertise) (TalkerAdvertise)
MSRPDU MSRPDU

< PHYSICAL MEDIA (CAT-5e) <>

[EEE 802.1 Interim - Seoul

Presenter
Presentation Notes
The MAP function inside a bridge is responsible for propagating MSRP attribute declarations to other ports on the bridge. In this example a TalkerAdvertise declaration is registered on the left side port, then propagated and declared on the right side port.

As part of this process, the MAP queries Qav to verify there is sufficient bandwidth available. There is no allocation of bandwidth at this time. This means more Talker registrations can be approved than there is actual bandwidth to support. If there is not enough bandwidth available, the TalkerAdvertise is changed to a TalkerFailed.

It is acceptable to have several TalkerAdvertise declarations outstanding, without associated ListenerReady declarations, that have requested more bandwidth than is available. None of the TalkerAdvertise declarations will be changed to TalkerFailed until a ListenerReady comes back through and causes bandwidth allocation which now drops available bandwidth to a level that is below that required by other TalkerAdvertise declarations. Those “other” TalkerAdvertise declarations will be changed to TalkerFailed.

Talker’s Second Stream Fails

uoneolddy

AR RRORIIION -1 § | | | SO

@ REGISTER_STREAM
(StreamID)

Status update

(Advertise)

@ REGISTER_STREAM
(StreamlID)

Status update

(Advertise)

REGISTER_STREAM_ATTACH |
(StreamlD)

Status update
(Failed)

24 September 2008

dVIN + (uonreayusA yipimpueq Buipnjour) dJ4SIN

MAD_Join.request

(TalkerAdvertise)

MAD_Join.request
(TalkerAdvertise)

MAD_Join.indication

I (ListenerReady)

@ MAD_Leave.request

(TalkerAdvertise)

MAD_Join.request

(TalkerFailed)

[EEE 802.1 Interim - Seoul

MSRPDU
(TalkerAdvertise join)

avin

| MSRPDU
(TalkerAdvertise join)

MSRPDU @

(ListenerReady join)

MSRPDU
—(TalkerAdvertise leaved
TalkerFailed join)

Presenter
Presentation Notes
This is an example of a Talker advertising two Streams with neither Stream having a listener. The bandwidth of the two Streams together is larger than the actual bandwidth of the link. Once a Listener attaches to the first Stream it causes MSRP to realize that there is not enough bandwidth left for the second Stream so it changes it from a Talker Advertise to a Talker Failed.

Assume Talker has a 100mbit link to the network. The following steps are shown in the diagram above:
1) Talker advertises first 60mbit Stream successfully
2) Talker advertises second 60mbit Stream successfully
3) A Listener attaches to first Stream successfully
4) MSRP now realizes there is not enough bandwidth for the second 60mbit Stream and changes the TalkerAdvertise to a TalkerFailed.

MAP is the process that recognizes this and makes the necessary adjustments since it is the only process that can see all the ports at once. MAP will also make all the necessary adjustments to the filtering/forwarding database for the related Streams.

This is another important difference between MMRP/MVRP and MSRP. MMRP and MVRP share a common MAP functionality that simply propagates attributes among the various ports on the bridge. MMRP and MVRP are actually responsible for updating the filtering/forwarding database. In MSRP the MAP function does all the processing of matching Talkers to Listeners, including updating the filtering/forwarding database. The actual MSRP application does nothing on a bridge, although end-stations do use it to exchange attributes across the network. Or, said another way, in a bridge MMRP does a lot of work itself, MSRP relies on the MAP to do all the work on a bridge.

Bridge Forwarding a Stream

SR Bridge

Host Application Host Application

MSRP Participant MSRP Participant

MSRP Qy MSRP

L Queuing & .
(MRP Application) Forwarding (MRP Application)

B

b
MAD_ MAD_Join.indication MAP_ MAD_Join.request MAD_

(MRP Attribute (TalkerAdvertise) (MRP Attribute (TalkerAdvertise) (MRP Attribute
Declaration) ‘ Propagation) Declaration)
MAD_Join.request MAD_Join.indication
(ListenerReady) (ListenerReady)

MSRPDU MSRPDU MSRPDU MSRPDU
< PHYSICAL MEDIA (CAT-5e) <> < PHYSICAL MEDIA (CAT-5e) <>

24 September 2008 IEEE 802.1 Interim - Seoul

Presenter
Presentation Notes
This diagram shows the results of a TalkerAdvertise that is eventually associated with a ListenerReady. This is where bandwidth is allocate for the Stream.

Note: the MAD_Join.indications for the TalkerAdvertise and ListenerReady that are sent to MSRP and the Host Application have been suppressed for this example. They are not used by the bridge for this process.

The steps involved are:
TalkerAdvertise comes in on left side port and is registered with that port. It is then sent to the MAP. Qav verified that bandwidth was available (no allocation occurs at this time) and MAP forwards the TalkerAdvertise to the right side port.
A Listener eventually sends a ListenerReady back toward the Talker. The right side port sends the ListenerReady to the MAP.
The MAP function associates the ListenerReady with the TalkerAdvertise and requests that Qav allocate the required bandwidth (as learned from the TalkerAdvertise). Queues are configured on the right side port and the MAC DA associated with the Stream is now allowed to be forwarded to the right side port. MAP forwards the ListenerReady only toward the port that registered the TalkerAdvertise (left side port) and the associated MAD forwards the ListenerReady declaration toward the Talker over the physical media.

Triggers for Bandwidth Reallocation

Bandwidth Reallocation

Actions that might cause a bandwidth allocation change
* TalkerAdvertise

e TalkerFailed

e ListenerReady

e ListenerReadyFailed

e ListenerAskingFailed

e Media bandwidth changed

Presenter
Presentation Notes
If any of these six (6) actions occur you may need to rerun the bandwidth allocation calculations and bring up or teardown various Streams.

Bandwidth Reallocation - 2

WARNINGS:

In normal operation you would expect to see
Talker declarations registered before Listener
declarations, although this is not a requirement.

You might also see unexpected interaction in
MSRP attribute processing for a short period of
time after a Spanning Tree reconfiguration.

Bandwidth Allocation Algorithm

Definitions & Notes

Bandwidth reservation is done on the TX side

Definition: Active Listener = Listener Ready or

Listener Ready Failed (bandwidth will be consumed if
this stream is Approved)

On Non-shared media: Talker Advertise from
another port is associated with Active Listener
on the current port

On Shared media: the Talker Advertise may
also come from the current port (e.g. 802.11)

Definitions & Notes - 2

* Merging Listener Declarations:

Table 19-1 Listener Declaration Type Summation

FIRST DECLARATION TYPE

SECOND DECLARATION TYPE

RESULTANT DECLARATION TYPE

Ready Ready

Ready Ready Failed or .
Asking Failed Ready Failed
Ready Failed Any Ready Failed

Ready or .
. Ready Failed

Asking Failed Ready Failed

Asking Failed Asking Failed

Presenter
Presentation Notes
Talker attributes are never merged since Qat only allows a single Talker for a Stream. There can be multiple Listeners for a Stream so there must be a technique defined to allow merging of Listener attributes into a single attribute that will be sent back to the Talker.

Per-Port Bandwidth Analysis

Do the following for each TX port (completing the
analysis for each port before proceeding to the next port):

— Create a list of Talker declarations from any other
port that could be sent out this port

— This list is divided into two sections:

e Streams with Active Listeners on this port are at the top
of the list

e Streams without Active Listeners on this port are at the
bottom of the list

— Sort each section by Talker Rank + StreamI|D

Per-Port Bandwidth Analysis - 2

* Include the following information with each Talker
declaration in the list:
— Stream ID
— Talker Attribute (Advertise or Failed)
— Talker Traffic Class (A or B)
— TSpec
— Talker is on same port “flag” (True or False)

 Bandwidth requirements double if True

— Stream MAC DA
— Stream VID
— Approved/Disapproved “flag” (set by Qav)

Qav Bandwidth Analysis

e Ask Qav to do a Trial Reservation based on
information in the list
— Qav will set Approved/Disapproved flag
— Qav may adjust Talker attribute

 Qav processes the list as follows:
— Work from top of list to bottom
— Calculate bandwidth requirements based on:

e TSpec + additional media overhead

 Double bandwidth requirement if Talker is also on this
port

Qav Bandwidth Analysis - 2

e Qav continues processing as follows:

— If bandwidth is not available for this stream with
this traffic class, or attribute declaration is Talker
Failed:

e Flag list entry as Disapproved
e Set attribute in list to Talker Failed on this port
e Move to next entry in the list

Qav Bandwidth Analysis - 3

* Qav continues processing as follows (There is

sufficient bandwidth for this stream):

— |f there are Active Listeners on this port:
e Flag list entry as Approved
e Reduce available bandwidth for remaining streams
e Move to next entry in the list

— |f there are no Active Listeners on this port:
e Flag list entry as Approved

* Do not reduce available bandwidth (no stream data will flow)
e Move to next entry in the list

Bandwidth Allocation

* Qav has finished processing this port’s list

e Compare Approved/Disapproved flag for every
stream against current reservations, as
specified on following pages

Bandwidth Allocation - 2

* Process list from top to bottom looking for
Disapproved streams:

— |f stream is currently Approved:

e Set port to filter Stream MAC DA

e Remove bandwidth allocation from Qav

* Deregister Talker Advertise from this port
— Register a Talker Failed on this port

— If there is a Listener attribute registered on this port
declare a pending Listener Asking Failed on the port the
Talker is registered on (this may require merging other

Listener attributes)
— Move to next entry in the list

Bandwidth Allocation - 3

 Reprocess list from top to bottom looking for Approved
streams:
— Deregister Talker Failed if it was declared for this port
— Register a Talker Advertise for this port
— |If stream is currently not Approved allocate bandwidth via

Qav
— Set port to forward Stream MAC DA

— Declare a pending Listener attribute on the port the Talker is
registered on that is identical to this port’s Listener attribute
(this may require merging other Listener attributes)

— Move to next entry in the list

Bandwidth Allocation - 4

e |f there are more ports on the bridge:

— Build a new list for the next port by returning to
the “Per-Port Bandwidth Analysis” slide #14

e If all ports have been processed:

— Proceed to the next slide and process the
“pending Listener attributes”

Listener Attribute Propagation

Listener Attribute Propagation

e Bandwidth Allocation for all ports in the
bridge has been completed

* Process each port’s pending Listener
attributes

— |If pending Listener attribute does not match
current Listener attribute
e Deregister current Listener attribute
e Register pending Listener attribute

Qat/Qav

What runs where?

What runs in the Talker?

e 802.1Qav for:

— Bandwidth query and reservation
— Queuing and shaping traffic

e 802.1Qat for:

— TalkerAdvertise request and ListenerReady
indication processing

— Bandwidth related Advertise/Failed changes

Presenter
Presentation Notes
Talker is not affected by optional Talker Pruning (MMRP). If Talker has not seen an MMRP declaration for the Stream’s MAC DA it does not know if Talker Pruning is in use and no Listeners want the stream –OR- Talker Pruning is not in use. Therefore Talkers will always send TalkerAdvertise/TalkerFailed declarations.

What runs in the Bridge?

e 802.1Qav for:

— Bandwidth query and reservation
— Queuing and shaping traffic

e 802.1Qat for:

— Bandwidth related Advertise/Ready/Failed
changes

— Talker & Listener attribute propagation

e 802.1ak (MMRP) for:
— Optional Talker pruning

What runs in the Listener?

e 802.1Qat for:

— TalkerAdvertise indication and ListenerReady
request processing

e 802.1ak (MMRP) for:
— Optional Talker pruning

MSRPDU Talker Attributes

| 802.3 MAC

MRPDU

I MAC DA = 01-80-C2-00-00-2X |
header || MAC SA = XX-XX-XX-XX-XX-XX -
{EtherType = XX-XX |

. . B bits // defined by the specific MRP application

A ProtocolVersion —

8 bits // non-zero integer defined by the

Attribute Type specific MRP application

FirstValue field)

8 bits // Non-zero integer defined by the
specific MRP application (length of

Attribute Length

VectorHeader

LeaveAllEvent

NullLeaveAllEvent = 0
3 bits | // LeaveAll = 1

 NumberOfValues

13 bits // Number of events encoded in the vector
// Corresponds to the number of FirstValue entries
_and number of AttributeEvants

| Message ||

24 September 2008

VectorAttribute
RUISIER ThreePackedEvents
Wector
ThreePacketEvents
| ThreePackedEvents
VectorAttribute
VectorAttribute
EndMark 16 bits // 0x0000
| Message |
{-)
{ Message |
- .16 bits // 0x0000
{EndMark —

I[EEE 802.1 Interim

- Seoul

........... SFirstValue 77 bits // defined by the specific MRP application

8-bits of
((AttributeEvent 6)+AttributeEvent)*6+AttributeEvent

AttributeEvent
/ New = 0
A Joinin =1
Hin=2
A JoinMT =3
A Mt=4

Hlv=5

30

Presenter
Presentation Notes
Fields shown in red are from the 802.1ak corrigendum.

AttributeLength specifies the length of the attribute held in FirstValue.

NumberOfValues specifies how many attributes will be store in the FirstValue, FirstValue+1, FirstValue+2, etc. NumberOfValues also tells how many AttributeEvents are encoded in the Vector ThreePackedEvents fields.

.-[Message |
| .

{

L

MMRPDU ‘

MMRPDU Message

8 bits / MACVectarAltribute Type = 2

| AttributeType =2 |—

8 bits /# Length of FirstValue field =

| Attribute Length = 6 |—

A NullLeaveAllEvent = 0

LeaveAllEvent 3 bits # LeaveAll =1

VectorHeader

NumberOfvalues 13 bits // Number of events encoded in the vector

FirstValue A MACVector = 48 bits for MAC Address

AttributeEvent

, A New =0
VectorAttribute A doinin =1

Hin=2
— ThreePackedEvents ﬁJDulMT =3
| AttributeList — 8-bits of Mt = 4
' | Vector ({AttributeEvent*6)+AttributeEvent)'6 +AttributeEvent #LV=5

| ThreePacketEvents

ThreePackedEvents

VectorAttribute

VectorAttribute

24 September 2008 IEEE 802.1 Interim - Seoul 31

Presenter
Presentation Notes
The MACVectorAttribute type stores MAC addresses (6 octets). If this message had multiple MAC addresses being registered they would go at FirstValue+1, FirstValue+2, etc, and there would be multiple ThreePackedEvents.

MSRPDU TalkerAdvertise Message

8 bits /¥ TalkerAdvertise=1
AttributeType=1

8 bits // Length of FirstValue
Attribute Length=27

16 bits // Length of AttributeList data
AttributeListLength=32

A NullLeaveAllEvent = 0
LeaveAllEvent 3 bits # LeaveAll = 1

VectorHeader
NumberOfValues 13 bits /' Number of events encoded in the vector
Talker MAC SA Address 48 bits
A StreamiD (8) -
A Unigue ID 16 bits
Stream MAC DA 48 bits
N Data Frame Parameters (8))
VLAN 1D 16 bits
A Bandwidth (in 1000 byte/second
Talke_r Advertise (27 octets) granularity) 32 bits
| Message — Sl e e # TSpec (6) | 4 Frame Rate (in 1000 frame/second
s granularity) 16 bits
VectarAttribute / Data Frame Priority (Class A=8§, Class B=4) 3 bits
L (1) /' Rank Stream Importance 5 bits (only
AttributeList define emergency plus high & low priority
MSRPDU for now)
A Accumulated Latency (4) 32 bits
AttributeEvent
/ New =0
M doinin =1
Hin =2
ThreePackedEvents # JDHEMT =3
8-bits of ﬁ:i’”: 4
VectorThreePacked {{AttributeEvent*6)+AttributeEvent)*6+Attribute Event ves
ThreePackedEvents
ThreePackedEvents

EndMark 16 bits # 0x0000
15 October 2008 IEEE 802.1 Interim - Seoul -

Presenter
Presentation Notes
We can take advantage of vectorization (is that a word?) , and declare 4,350 TalkerAdvertise attributes in a single 1500 byte packet, IFF:
 1. StreamID uses same Talker MAC SA Address for all attributes
 2. UniqueID is monotonically increasing for each attribute
 3. Stream MAC DA is monotonically increasing for each attribute
 4. Tspec, Priority, Rank and Latency are the same for each attribute

We simply have to redefine what ‘FirstValue+1’ means in 802.1ak clause 10.8.2.8.
MMRP and MVRP define this as:
 ‘increment FirstValue by 1’.
MSRP will define this as:
 ‘increment StreamID:Unique ID by 1’
 ‘increment ‘Stream MAC DA by 1’

Does this even make sense? YES. A mixing console is capable of producing 1000+ streams that all come from the same Talker (the Console). If these streams could all be single or dual channels and all of the same Rank, this will work. The latency of all these streams will be identical because they will all traverse through the same bridges. In theory a Console could advertise 4,350 streams from a single Console with one MSRPDU.

Another interesting approach could be to have several Talkers use Zeroconf to communicate with each other and generate a common StreamID:Talker MAC SA Address, etc.

15Oct2008: Added AttributeListLength to allow skipping past unknown attribute types in a packet (caused by introducing FourPackedEvents.

MSRPDU TalkerFailed Message

| Attribute Length=36 —

1 Message —

-

MSRPDU

15 October 2008

8 bits /' TalkerFailed=2

{attriputeType=2
8 bits /' Length of FirstValue

16 bits // Length of Altributelist data

| AttributeListLength=41 —

A NulfLeaveANEvent = 0

3 bits

Leavedll =1

LeaveAlEvent
VeclorHeader |

13 bits V¥ Number of evenls encoded in the vector

NumberOfvalues

A StreamiD (8)

A Data Frame Paramelers (8)

Talker MAC SA Address 48 bits

¥ Unigue ID 16 bits
/4 Stream MAC DA 438 bits

Talker Failed (36 octets)
A AltributeType = 2

& VLAN ID 16 bits

A Bandwidth (in 1000 byte/second
qranularity) 32 bits

TSpec (6) |

A Frame Rate {in 1000 frame/second
granulanty) 16 bits

FirstValue A4 Data Frame Priorily {Class A=5, Class B=4) 3 bits
‘ (1) A Rank Stream Importance 5 bits (only
—— | define emergency plus high & low priority
VectorAltribute for now)
| Attributalist — | # Accumulated Latency (4) 32 bits
Bridge ID (13.y) of bridge that changed
declaration from Advertise to Failed
/7 64 bits
4 Failure Information (3) - - .
| Failure code returned by LAC Service (35.x) 8 bits
AltributeEvent
A New =0
& Joinin =1
Hn=2
ThraePackedEvents # JoinMT = 3
8-bits of # Mt =4
VectorThreePacked | ((AttributeEvent 6)+Altribute Event "6+ AttributeEvent #lv=15
| ThreePackedEvents
ThreePackedEvents

16 bits /// 0x0000

[EEE 802.1 Interim - Seoul

EndMark

33

Presenter
Presentation Notes
We can declare 4,323 TalkerFailed attributes in a single 1500 byte packet. This has all the same restrictions as the previous TalkerAdvertise slide, plus the FailureInformation must be identical for all streams. This is probable since all streams must be the same size and it is not unreasonable to expect all streams to fail the same way at the same bridge.

15Oct2008: Added AttributeListLength to allow skipping past unknown attribute types in a packet (caused by introducing FourPackedEvents.

#
f

MSRPDU (all) Listener Message

8 bits /' Listener=,
Attribute Type=3

8§ bits // Length of FirsiValue
Attribute: Length=8

16 bits // Length of Attributelist data
AttributelistLength=14

LeaveAllEvent 3 bits
VectorHeader

NullLeaveAllEvent =0
LeaveAll =1

NumberOfYalues 13 bits &/ Number of events encoded in the vector

Listener Ready
Listener Ready Failed

Listener .I‘\Skil"lg Failed (B OCTET.S} & Talker MAC SA Address 48 bits
Attribute Type = 3 A StreamiD [inique ID 16 bits
FirstValue
y ‘I Message l_ ThreePackedEvents
8-bits of
VectorThreePacked ((AttributeEvent*6)+AttributeEvent)*6+AttributeEvent
WectorAttribute
3 AftributeList ThreePackedEvents
MSRPDU
ThreePackedEvents
DeclarationType
M lgnore = 0
/¥ AskingFailed = 1
Ready = 2
< " # ReadyFailed = 3
FourPackedEvents _First DeclarationType 2-bits V!
Second DeclarationType 2-bits
VectorFourPacked

FourPackedEvents

FourPackedEvents

EndMark 16 bits /7 0x0000
15 October 2008 IEEE 802.1 Interim - Seoul

Third DeclarationType 2-bits
Fourth DeclarationType 2-bits

AftributeEvent
M New =0
& Joinin = 1

Hin=2

H JoinMT = 3

M Mt=4
Hiv=15

34

Presenter
Presentation Notes
All Listener attributes (AskingFailed, Ready and ReadyFailed) are combined into a single Attribute Type. This allows a single Listener MSRPDU to be created for an entire range (2,517) of Streams. All that needs to be common between the streams is an identical StreamID:Talker MAC SA Address and a monotonically increasing StreamID:Unique ID.
The Ignore declaration type will allow bridges to consolidate sparsely populated stream requests from different Listeners into a single Listener MSRPDU.

15Oct2008: Added AttributeListLength to allow skipping past unknown attribute types in a packet (caused by introducing FourPackedEvents.

Questions?

	Slide Number 1
	Topics
	Slide Number 3
	MSRP Attribute Propagation
	Bridge MSRP Propagation
	Talker’s Second Stream Fails
	Bridge Forwarding a Stream
	Slide Number 8
	Bandwidth Reallocation
	Bandwidth Reallocation - 2
	Slide Number 11
	Definitions & Notes
	Definitions & Notes - 2
	Per-Port Bandwidth Analysis
	Per-Port Bandwidth Analysis - 2
	Qav Bandwidth Analysis
	Qav Bandwidth Analysis - 2
	Qav Bandwidth Analysis - 3
	Bandwidth Allocation
	Bandwidth Allocation - 2
	Bandwidth Allocation - 3
	Bandwidth Allocation - 4
	Slide Number 23
	Listener Attribute Propagation
	Slide Number 25
	What runs in the Talker?
	What runs in the Bridge?
	What runs in the Listener?
	Slide Number 29
	MRPDU
	MMRPDU Message
	MSRPDU TalkerAdvertise Message
	MSRPDU TalkerFailed Message
	MSRPDU (all) Listener Message
	Slide Number 35

