

PBB-TE Segment Protection

David W. Martin
January 12-16th, 2009
New Orleans, LA
v00

Contents

- > Problem Statement
- > Segmentation Approach
- > Segment Protection Options
- **Conclusions**

Problem Statement

- For any connection oriented end-to-end path protection scheme (aka trail protection), as the total media length and the amount of intermediate equipment increases so does the probability of simultaneous failures (i.e., within a 4hr MTTR window) along both the working and protection paths, eventually impacting the corresponding availability target (e.g., 99.999% or 5min/yr downtime)
- > PBB-TE P802.1Qay 1:1 protection falls into the above category
- September 2008 (Seoul) presentation* provided requirements from two Service Providers in India for a PBB-TE local repair mechanism to mitigate the above problem

^{*} new-Protection-Vinod-Case-for-Segment-Protection-0908-v1.pps

PBB-TE Protected Domain: Expanded View

General Segmentation Approach

- The general solution is to split up the end-to-end paths and provide some type of local repair on a segment in order to improve overall availability
- Another benefit is maintenance domain independence if operator requests are supported as well as automatic (fault) requests

Contents

- > Problem Statement
- > Segmentation Approach
- > Segment Protection Options
 - 1:1 Infrastructure Segment Protection
 - 1:1 Segment Server Protection
- **Conclusions**

1:1 Infrastructure Segment Protection Switching

PBB-TE "Infrastructure Segment" Definition

- ➤ Primary infrastructure segment (the protected entity) is the common underlying infrastructure between the PNPs on nodes A and P
- ➤ Backup infrastructure segment is pre-established by provisioning the FDBs of nodes along a diverse route for the same set of TESIs / <B-DA, B-VID>'s

PBB-TE Infrastructure Segment Integrity

6.9 : Support of the EISS 9.5(b) : TPID for S-TAG

8.5 : Bridge Port Transmit and Receive

6.7 : Support of the ISS by specific MAC Procedures

6.17 (VID), 6.18 (I-SID), 6.19 (TESI) mux/demux not shown

Introduce MEPs (with individual MAC addresses) on PNPs of nodes A and P to monitor infrastructure segment integrity (using a B-VID from the range allocated for PBB-TE)

PBB-TE Infrastructure Segment Integrity

6.9 : Support of the EISS 9.5(b) : TPID for S-TAG

8.5 : Bridge Port Transmit and Receive

6.7 : Support of the ISS by specific MAC Procedures

6.17 (VID), 6.18 (I-SID), 6.19 (TESI) mux/demux not shown

➤ CCMs between the PNP MEPs monitor that individual datapath, which includes the common shaded areas, and all links

PBB-TE Infrastructure Segment Integrity

CCMs between nodes A and P on the primary and backup infrastructure segments cannot use the same addressing as the e2e ESPs

$$\langle P, A, ESP-VID \rangle \neq \langle ESP-DA, ESP-SA, ESP-VID \rangle$$

➤ Therefore the infrastructure segment integrity coverage does not entirely monitor the constituent TESI segments

TESI Segment Integrity and e2e Protection

➤ A fault on the dark blue datapath, specific to a TESI, would be protected by e2e P802.1Qay TESI protection

PBB-TE Infrastructure Segment Switch

- ➤ The switching trigger is either loss of infrastructure CCMs or an operator request
- > FDBs on nodes A and P are updated with the Port entries for the PNPs on the backup infrastructure segment

Infrastructure Segment Switch Limitation

- The portion of a TESI datapath through an *active segment* that is not monitored by the infrastructure segment CCMs is monitored by the e2e CCMs from P802.1Qay, and a fault there would be protected by e2e P802.1Qay TESI protection
- ➤ However, the corresponding portion of a TESI datapath through the *inactive segment* cannot be monitored by the e2e CCMs since they are not forwarded on that path
- > Performing a protection switch to a path of unverified integrity is called "blind switching"

Infrastructure Segment Switch Limitation

- The potential impact of blind switching is:
 - For a fault initiated switch to the inactive infrastructure segment (with a latent TESI datapath fault), the e2e P802.1Qay protection mechanism for the affected TESI would eventually execute following its hold-off timer and if protection resources are available → prolonged traffic loss
 - For a manual switch to the inactive infrastructure segment (with a latent TESI datapath fault), there would be traffic loss on the TESI until the e2e P802.1Qay protection mechanism executed → unnecessary traffic loss
- The first scenario can be argued as acceptable since there are two faults
- ➤ But would a manual switch resulting in traffic loss (albeit brief, say ~150ms) for this latent datapath fault scenario be considered Carrier Grade?

Protection Functionality Checklist

- Basic elements of 1:1 infrastructure segment protection scheme:
 - **☑** Triggers / Protected Domain
 - MEPs at infrastructure segment endpoints monitor CCMs
 - **☑** Bridge mechanism
 - Selective 1:1 bridge via FDB egress Port entry update
 - **☑** Selector mechanism
 - Merging selector via PNP B-VID membership
 - **☑** Protection phases
 - Single phase protocol
 - **☑** Signalling channel / information
 - CCM RDI flag for bridge request under fault conditions
 - Dual-ended management plane requests for operator commands

1:1 Infrastructure Segment Protection Recap

- ➤ Complements the current e2e P802.1Qay TESI protection by providing independent protection for infrastructure segment faults
- Could also provide maintenance domain independence if operator requests are supported
- ➤ A TESI segment datapath fault, not covered by the infrastructure integrity check, on the *active segment* would be protected by the e2e PBB-TE protection
- ➤ A TESI segment datapath fault, not covered by the infrastructure integrity check, on the *inactive segment* can lead to brief, unnecessary traffic loss until protected by the e2e PBB-TE protection

1:1 Segment Server Protection Switching

1:1 Segment Server Protection

- Rather than attempt to provide a protection mechanism at the same layer, consider a hierarchal approach
- ➤ Fully encapsulate all e2e PBB-TE traffic, along either the working or protection entity, into a new PBB-TE protected domain for the extent of the segment
- Provides full integrity coverage
- > Avoids defining a new protection mechanism

PBB-TE 1:1 Segment Server Protection

- ➤ Upgrade the BCBs at the edges of the segment to IB-BEBs and provide a PBB hierarchal (802.1ah 26.6.1) S-tagged interface (802.1ah 25.4)
- Each segment is now a new (server layer) TESI in a regular PBB-TE 1:1 TESI PG, with the corresponding TESI CCM integrity coverage

PBB-TE 1:1 Segment Server Protection

- ➤ Segment B-MACs are the server IB-BEBs (nodes A and P) CBPs' MACs
- > Segment B-VID corresponds to either primary or backup segment
- > Segment I-SID would be specific to that protected domain
- Note the original ESP B-TAG is retained according to the bundled S-tagged interface definition
- ➤ A fresh FCS would be calculated and appended over the segment

1:1 Segment Server Protection Summary

- Segment integrity coverage is complete since the server layer provides the necessary CCMs over both primary and backup segments (i.e., the server P802.1Qay working and protection TESIs)
- > Protection within the segment is exactly as defined by P802.1Qay
- No new work for 802.1
- The price tag is the additional PBB encap

Note that the P802.1Qay PAR scope statement "This project will not take account of multi-domain networks" is referring to peered networks, not hierarchal networks such as discussed here

Segment Server Protection Variations

Segment Server Protection Variation I

- > Recall: The price tag is the additional PBB encap
- There are a couple of perspectives on this:
 - The extra equipment involved (i.e., IB-BEB vs BCB)
 - The extra bandwidth consumed due to the encap
- ➤ It has been suggested that the I-TAG is not really required within a PBB-TE segment
- ➤ The I-component PIP and B-component CBP of the IB-BEB could be simplified to not utilize a full I-TAG (i.e., leave just the e2e B-MACs)
- ➤ The additional PBB encap would be the minimum achievable 16B (rather than 22B) still much larger than a 4B MPLS label used for FRR

Segment Server Protection Variation II

> Recall that the requirements outlined in:

new-Protection-Vinod-Case-for-Segment-Protection-0908-v1.pps

included support for M:1 protection on the segment

- ➤ An M:1 mode could be a relatively straightforward enhancement of the existing P802.1Qay PBB-TE 1:1 TESI protection
- ➤ M:1 provides very high availability by switching to whichever protection entity is available, by automatically escalating through a pre-established prioritized sequence

Note that the same M:1 mode could be used for the e2e protection scheme, if M+1 diverse paths are available e2e.

Example 3:1 PBB-TE Protection Group

Transmit CBP traffic is sent over a given TESI by altering the B-VID accordingly Received CBP traffic is the merge of traffic from all TESIs

Segment Server Protection Variation III

- ➤ Recall that existing P802.1Qay PBB-TE 1:1 TESI protection can optionally operate in a load-sharing mode, where groups of BSIs are individually 1:1 protected across a set of multiple TESIs
- ➤ So M+1 TESIs within a segment could be used in P802.1Qay load-sharing mode, thereby not requiring a new specification
- > Two disadvantages compared to the previous M:1 TESI protection are:
 - If both the W and P TESIs fail for a given PG then its traffic is lost
 - More operationally complex as traffic is spread across multiple TESIs within a segment

Conclusions

- 1:1 Infrastructure Segment Protection
 - Relies on having e2e P802.1Qay TESI protection for handling certain TESI segment datapath faults
 - That corner case integrity exposure can lead to brief, unnecessary traffic loss for a manual switch
- 1:1 Segment Server Protection
 - Provides full integrity coverage
 - No new work for 802.1
 - Requires additional PBB encap
 - Possible variants:
 - without full I-TAG
 - **M:1 mode**
 - load-sharing mode