Redundancy experience used

Improvement of system robustness → HSR

seamless redundancy
 (No stop in case of single failure in ring)

Time synchronization used for

phase adjustment

protection functions

measurement variables

in Energy
automation
Demonstrated at
Cigre 2010

Status Redundancy

- Protocols defined in1588 & related Standards (e.g. C37.238)
 - Critical issue: follow up must be taken from same path
- But what is the impact on accuracy in case of an error?
 - → control loops are designed for constant delivery of time
- Negative impact in case of an error
 - Longer period of time without sync
 - Significant Offset error
 - Frequency change in case of local Sync
 - Migration problems if time domains are merged

→ Need Robust Sync not Redundancy

Sample Error cases

Normal Flow

Error margin +/-150ns 50% of noise signal

Blackout 40sync

Error margin 2500ns Disturbance for 70 cyc **Additional Correction** required for Master xchg

Changing offset

500ns offset change(5 cyc) Error margin 850ns Disturbance for 70 cyc 4 times higher correction

Clock w.300ns Sync noise

Clock w.300ns noise 40 Cyc Blackout

Clock w.300ns noise changing offset

-1000

Deviation in ns

Deviation in ns

Observation and further steps

- Redundancy means less stability
- And more critical situations

- Improvements
- Seamless redundancy (shorter changeover)
- → Adapted control loop in case of missing Sync
- Detection and handling of offset differences in redundant networks

Common setup for handling this errors needed