

Craig Gunther (craig.gunther@harman.com)

May 2011 – Santa Fe interim (Updated 18May2011)

Acknowledgements

Reference materials:

- new-kim+goetz-Ultra-Low-Latency-Switching-v5.pdf¹
- ba-kw-stream-latency-Improvements-0311.pdf²
- ba-pannell-latency-math-1110-v5.pdf³
- ba-boiger-per-hop-class-a-wc-latency-0311.pdf⁴

Introduction

- Ultra-low latency¹ & Fragmentation¹ are two separate topics
- The goal of this presentation is not ultra-low latency, but to explore the benefits of fragmentation on existing AVB Classes
- Make fragmentation available to all AVB shapers

Definitions

- Interfering Traffic (IT): frames of a lower priority which cause delays to transmission of higher priority frames.
- Suspend-and-Resume (SaR): Suspending transmission of a lower priority frame so a higher priority frame can be transmitted, followed by resumption of the lower priority frame. This can occur more than once to a large low priority frame.

Multi-Class SaR

*Note: This slide assumes UL frames are separate from SR Class A & B frames.

Possible SaR Marking¹

- After peer Gen-2 devices agree they can do SaR (via LLDP?) they know <u>every</u> packet sent between them has a new 8-bit header that defines fragment characteristics
- 8-bit header contains:
 - 2 flag bits: begin, previousEnd
 - Four SaR-classes requires 2-bits to identify
 - 4-bit sequence number per SaR-class

SaR Reassembly

- If "previousEnd" bit is set then previous frame has been completely reassembled; pass it on
 - Sequence numbers can be used to detect missing fragments. Note that there are only 16 sequence numbers so this can fail if there are 16 missing fragments in a row.
- If "begin" bit is set then reset SaR-class buffer pointer to beginning of buffer
- Append fragment to SaR-class buffer

Multi-Class SaR Concerns

- One Ingress buffer for each SaR-class
 - Class A and Class B buffers are limited size
 - Best Effort buffer must support Jumbo frames
- MACsec, etc, concerns?
- Effects on PHY/MAC/CAM?
- Will 8-bit SaR header work?

Multi-Class SaR Benefits

- Jumbo Packets are back!
- Talker burst limit of two back-to-back frames⁴
 - Can we now define a latency formula?
- Gen-1 and Gen-2 switches can co-exist between Talkers and Listeners
 - Obviously fragmentation (and reduced latency)
 can only occur between Gen-2 devices
- Reduced latency for higher priority frames

Bridge Port Latency Math with SaR³

Max Latency = $t_{Device} + t_{Interval} + t_{MaxFrameSize} + t_{Stream} - t_{(Stream+Gap)} *1.333$

 t_{Device} = 5.12 μ s

 $t_{Interval}$ = 125 μ s

 $t_{\text{MaxFrameSize}} = 6.72 \mu \text{S} \text{ (for 64 bytes + IFG + preamble)}, 7.68 \mu \text{S} \text{ (for 96 bytes + IFG + preamble)}$

 t_{Stream} = 5.12 μ S (assuming 64-byte frames)

 $t_{(Stream+Gap)} = 5.12\mu s + 1.6\mu s$

Max Latency_{100 MB/s} = 5.12μs + 125μs + 6.72μs + 5.12μs - ((5.12μs + 1.6μs) * 1.333) = **133.00**μs Max Latency_{1000 MB/s} = 0.512μs + 125μs + 0.672μs + 0.512μs - ((0.512μs + 0.16μs) * 1.333) = **125.80**μs

	100 MB/s [x7]	1000 MB/s [x7]
Without SaR	249.64μs [1747μs]	137.46μs [962μs]
With 64-byte SaR	133.00μs [931μs]	125.80μs [881μs]
With 96-byte SaR	135.56μs [949μs]	126.06μs [882μs]

Thanks