

Craig Gunther (craig.gunther@harman.com)

July 2011 – San Francisco plenary

Acknowledgements

Reference materials:

- 1. new-kim+goetz-Ultra-Low-Latency-Switching-v5.pdf
- 2. ba-kw-stream-latency-Improvements-0311.pdf
- ba-pannell-latency-math-1110-v5.pdf
- 4. ba-boiger-per-hop-class-a-wc-latency-0311.pdf
- 5. IEEE P802.1BA/D2.4 corrected

Introduction

- Ultra-low latency¹ & Preemption¹ are two separate topics
- The focus of this presentation is not ultra-low latency, but to explore the benefits of preemption for existing AVB Classes
- Goal: Make preemption available to all AVB shapers

Definitions

- Interfering Traffic (IT): frames of a lower priority which cause delays to transmission of higher priority frames.
- **Preemption:** Suspending transmission of a lower priority frame so a higher priority frame can be transmitted, followed by resumption of the lower priority frame. This can occur more than once to a large low priority frame.

Multi-Class Preemption (with separate UL* frames)

*Note: This slide assumes Ultra-Low latency (UL) frames are separate from SR Class A & B frames

Multi-Class Preemption (with UL in SR Class A)

Possible Preemption Marking

- Assume neighboring Gen-2 devices agree they can do preemption (via LLDP?). Here's two possible implementations:
 - Option 1: neighboring devices know <u>every</u> packet, including AVB streams, sent between them has a new header for preemption flags. This introduces wasted bandwidth and increased AVB latency if preemption is not applicable because of new flags in every packet.
 - Option 2: use a new "preempted packet" EtherType and only those packets have preemption flags.

New Preemption Header Fields

16 bits of EtherType

 If we choose Option 2 we need a field to hold original packet's EtherType

8 bits of flags

- 2-bit flag: begin, previousEnd
- 2-bit SR Class ID
 - Three preemption classes requires 2 bits to identify
 - Two preemption classes would require a 1-bit field
- 4-bit sequence number per preemption class to detect dropped frames

Reassembling the Pieces¹

- If "previousEnd" bit is set then previous frame has been completely reassembled; pass it on
 - Sequence numbers can be used to detect missing pieces. Note that there are only 16 sequence numbers so this can fail if there are 16 missing pieces in a row.
- If "begin" bit is set then reset the class reassembly buffer pointer to the beginning
- Append piece to per-class reassembly buffer

Multi-Class Preemption Concerns

- One Ingress buffer for each preemption class
 - Class A and Class B buffers are limited size
 - Best Effort buffer must support Jumbo frames
- MACsec, etc, concerns?
- Effects on PHY/MAC/CAM?

Multi-Class Preemption Benefits

- Jumbo frames are back!
- Talker burst limit of two back-to-back frames⁴
 - Can we now define a latency formula?
- Gen-1 and Gen-2 switches can co-exist between Talkers and Listeners
 - Obviously preemption (and reduced latency) can only occur between Gen-2 devices
- Reduced latency for higher priority frames

Jumbo frames vs. MSRPDUs

("Do we need preemption for AVB BPDUs?")

- Wikipedia (http://en.wikipedia.org/wiki/Jumbo_frame)
 - Jumbo frame maximum size of 9000 bytes
 - No support on Fast Ethernet, only Gigabit or better
 - Super Jumbo frames ~ 64K bytes
- MSRPDUs and Jumbo frames
 - LeaveTime = 600-1000ms (802.1Q Table 10-7)
 - $-9000 \text{ bytes @ FE } (.08\mu\text{s/byte}) = 720\mu\text{s}, @ GE=72\mu\text{s}$
 - 64K bytes @ FE = 5.12ms, @ GE=512 μ s
- MSRPDUs on Jumbo frame network are okay

("No, we do not need preemption for AVB BPDUs")

Bridge Port Latency Math with Preemption⁵

```
\begin{array}{ll} \text{Max Latency} = t_{\text{Device}} + t_{\text{MaxPacketSize+IPG}} + \left(t_{\text{AllStreams}} - t_{\text{StreamPacket+IPG}}\right) * \text{Rate/MaxAllocBand} + t_{\text{StreamPacket}} \\ t_{\text{Device}} &= 5.12 \mu \text{s} \\ t_{\text{MaxPacketSize+IPG}} &= 6.72 \mu \text{s} \text{ (for 64 bytes preempt)}, 9.28 \mu \text{s} \text{ (for 96 bytes preempt)} \\ t_{\text{AllStreams}} &= 93.75 \mu \text{s} \\ t_{\text{StreamPacket+IPG}} &= 6.72 \mu \text{s} \text{ (assuming 64-byte stream frames)} \\ t_{\text{StreamPacket}} &= 5.76 \mu \text{s} \text{ (assuming 64-byte stream frames)} \\ \end{array}
```

Max Latency_{100 MB/s} = 5.12μ s + 6.72μ s + $(93.75\mu$ s – 6.72μ s) * 100/75 + 5.76μ s = **133.64μs** Max Latency_{1000 MB/s} = 0.512μ s + 0.672μ s + $(93.75\mu$ s - 0.672μ s) * 100/75 + 0.576μ s = **125.864μs**

	100 MB/s [x7]	1000 MB/s [x7]
Without preemption (Jumbo)	848.52μs [5940μs]	197.36μs [1382μs]
Without preemption (Super Jumbo)	5248.52μs [36740μs]	637.36μs [4462μs]
Without preemption (1522 byte)	250.28μs [1752μs]	137.53μs [963μs]
With 64-byte preempted packets	133.64μs [936μs]	125.87μs [882μs]
With 96-byte preempted packets	136.20μs [954μs]	126.12μs [883μs]

Recommendations

- New EtherType for preempted packets
- Only SR Classes (A, B, UL) can preempt. AVB BPDUs do not appear to need to preempt.
- Update proposed PAR to support SR Class A & B preemption. It is currently limited to UL.
- No recommendation regarding combining SR Class A & UL.

Thanks

Change history

- v01 original presentation at Santa Fe
- v02 presented on 18May2011 AVB weekly call
 - Slide 2: Update presentation references
 - Slide 3: Fragmentation should only be used by UL & SR Classes
 - Slide 5: Fix packet diagram on ingress ports
 - Slide 6: Sequence #s are not optional
 - Slide 8: Address reassembly buffer requirements
 - Slide 9: Jumbo packets are more important than originally thought
- V03 changes suggested on 18May2011 AVB weekly call
 - Don't say "fragmentation" or "SaR", use "preemption" to reduce confusion
 - Slide 2: Number Acknowledgements as footnotes
 - Slide 3: Make goal of presentation more obvious
 - Slide 6: Insert new diagram for UL contained in SR Class A
 - Slide 7: Add note about a 1-bit field for preemption class ID
 - Slide 9: Add note about possible 32-bit header w/EtherType

Change history (continued)

- v04 presented at San Francisco plenary
 - Slide 7: Rework
 - Slide 8: Rework
 - Slide 10: Move 32-bit header idea onto slides 7 & 8
 - Slide 12: Insert slide on effect of Jumbo frames on MSRPDUs
 - Slide 13: Use new latency formula from IEEE P802.1BA/D2.4 (corrected). Add latencies for Jumbo (9000 bytes) frames and Super Jumbo (64000 bytes) frames.
 - Slide 14: New recommendations slide