802.1Qbp — ECMP
Multicast Load Spreading

Ben Mack-Crane
(ben.mackcrane@huawei.com)

17-Sep-11

Observations on Multicast ECMP

« Multicast cannot use the unicast load spreading mechanism
— Must forward on multiple ports (cannot select just one)
— Random selection & replication can lead to duplication & loops

« ECMP for unicast traffic makes congruence (unicast-multicast
and bi-directional) either easy or impractical (depending on
how the definition is adjusted)

— In either case congruence is not a concern with ECMP

« Multicast traffic must be constrained to a tree
— to avoid loops and duplicate frames

17-Sep-11 2

Spreading Multicast Traffic

* |In SPBM each service instance (I-SID) has distinct group
addresses used to carry client multicast/broadcast traffic

— Group addresses composed from SPSourcelD & I-SID
— # multicast flows = #service instances * #edge nodes

* Multicast filtering governed by VID and address (not Flow ID)
« Each multicast address can be independently routed

* Could assign each address to a different SPT

— All nodes must agree on assignment to produce consistent
forwarding state

— Potentially large calculation (tree per address)
— Probably more addresses than SPTs anyway

17-Sep-11

One Approach — Hashed SPT per Source

» Select “random” tree from SPT set for each source node

— Select from all SPTs, not just those selected by .1aq tie-breakers
» Use this tree for all flows from that node

— All I-SID multicast from source node use same tree

— |-SIDs have varied endpoints, so some spreading within tree

* Use hash (e.g., FNV) to select one “parent” from set of equal
cost parents calculated for unicast ECMP
— Modest addition to route calculation
— Include source node MAC address in hash to create variation

* Tried this out in an SPB simulator...

17-Sep-11

Unicast SPB, e.g. between 26 and 32

26 249
10 10 10 10
10
25 b w S
L e 10 g2 L
" 10 " 12 m
il g 10
14
h 1]
4]
10 0 n 1]
0
10 10 10
10 hirl 1 20
0
2 10 -
21 W 27 n
10 b i
s 15
0 L]
g 10
i Ul L 0 16
0
10 1a
4 10 10
1 10 1
10 25 10 24 12
W0 10
10
14 10 10
1 10 0 10
0 10 1d Ul
a 18
10 1 " a1
10 17 o}
10] e
12
11 10 12 0
36 1 10
10
hLi} Ha 0 0
- 24
33

SPB selects a single path using an ECT tie-breaking function.

Unicast ECMP, e.g. between 26 and 32

@

ECMP load spreading utilizes all links on equal cost paths for unicast
traffic.

SPB Multicast Tree, e.g. I-SID 255 from 26

£
Both-25¢

25
2
Both-255

0

0
10
W

1
Both-255
36
Both-255

L]
10
G
10
a
L]
0
0

1

o

10

0
0
L]
10
o
1@
10
0
jLul
35

21

24

10 0) 12
T 10 g
0 1] n (1]
10
G
10 22
L. 10
10 24
1
il
i} 10 1 o

11 10 12

29

Both-255
10
i
10
13 1
10
14
10
10
10
10
10 10
10 10
14
1ia
10
10 e 10
10 10
1
10
1
18
" 10
17 10
10
10
i
az
33

Both-255

20
B oth-2455

19
B oth-2465

31

Multicast selects links from one equal cost tree using ECT tie-breaker.

ECMP Multicast Tree, e.g. I-SID 255 from 26

Multicast load spreading selects links from all equal cost paths using a
hash function (in this case FNV).

Code for Parent FNV hash

#define ClAQ SYST HASH PARENT (result, syst, r, n) \
{ register tUINT32 hash = 0x811C9DC5; \
register tUINT64 fodder; \
register tUINT32 fnvPrime = 0x01000193; \
register tUINT32 best = 0; \
register int k,m, np = syst->node[n].np; \
for (m=0; m<np; m++) \
{ \
fodder = syst->node[r].sysIdMac([0]; \ «\\
or (k=0;:k<7; \ .. .
s \ This is the code in the SPB
hash = hash " (fodder & 0x000000£f); \ simulator used to generate these
hash = hash * fnvPrime; \ . C . 0
fodder - fodder 5> 8; \ slides — I'm not sure this is a
} \ correct implementation of FNV —
fodder = syst->node[syst->node[n].parent[m]].sysIdMac[0]; \ |
for (ko0 KeTskit) N \comments welcome! Y
{ \
hash = hash ~ (fodder & 0x000000ff); \
hash = hash * fnvPrime; \
| fodser T fesden \ Random parent selection from
if (hash > best) \ ECMP set to produce source tree
{
best = hash; \ « Uses Highest Random Weight
result = m; \
} \ (RFC 2991) to minimize impact of
} \
result = (m==0 ? -1 : syst->node[n].parent[result]); \ tOpOIOgy Change

18-Sep-11 9

All SPB Multicast Trees, e.qg. |-SID 255

27
:
B oth-25? Both-255
10 0) 12
0 10 10 30
o5 Both-255
i T 10 g 10
10
mn 1 13 o
il 10
=}
14
0
fal
0 A0 LU 1]
10
0 a 10
10 . 1a 20
0 Both-255
2 0 -
Both-255 21 - 2 10
10 11
10 10
15
- 3 10
Ad 0
0 o L 0
" 1@ 16 0
4 10 u
i 0 10 19
w23 10 24 Both-255
10 10
10
1] 1 il
1 n 10 10
Both-255 1
5 10 10 0 18
10 L ° 31
10 17 10
10 in i
10
11 10 12 it}
26 10 0
Both-255 0
U] 0 10 10
32
- 24
33

Set of multicast trees are congruent.

All Multicast Trees, e.qg. |-SID 255

£
Ell:ut Both-255
L] 0 1 jLu]

10 " 20
25 “ o Both-255

12

14

20
Both-255

2

Both-255 =1 @ 5

15

16

19

i 1 e Both-255

1
Both-255

ch|
10 17

11 10 12

36
Both-255

a3z

35

34
33

Multicast load spreading selects links from all equal cost paths using a
hash function (in this case FNV). Different trees are selected for each
root by including root MAC address in hash.

Observations on this Approach

« ECMP algorithm used for both unicast and multicast
— Provides load spreading for both types of traffic

* Multicast spreading uses a standard hash (pseudo-random)
* Good computational performance (relatively minor change)
* No provisioning required! (just like unicast)

— No selection or configuration of VID or tie-breaker needed

* Propose further study of spreading performance and selection
of a standard hash algorithm for use in multicast route
calculation

17-Sep-11 12

One Concern — Multicast State Scaling

* Feedback expressing concern about scaling of multicast state
— Multicast state is required per group address (I-SID endpoint)

* In networks with many BSls with many endpoints each...
— Result is many many group addresses registered in FDB

* E.g., virtual desktop VLAN may have 100s of endpoints
(1000’s of users)

— With default .1aq this means 100s of group addresses
— And that is just for one I-SID!

 |n large DC networks many group addresses may be
assigned to the same tree (many more addresses than trees)

« Can we provide better scaling behavior?

18-Sep-11 13

Loop Free SPT Set
ECT,

Aq Az Ag 8. B: B; G G2 Gy 0. D= Dy

Data center “fat tree” network architecture has a very regular structure
A shortest path tree can match an SPT Set (i.e., be SPT from all endpoints)

Using a shared tree for multicast reduces the forwarding state required _
(i.e., can use one address per service instead of one address per service endpoint)

Page 14

ECMP with Shared Trees

ECT;, ECT.

x \ PN
AR 'Vs‘}\n

NN W W N 1‘

A Az A BB B GGy 0. Dz Dy Ay Ag As B B: By 0y

P AN
A AW N

(X
M N W NN

Ay Ay By B. B By C, Cs Cy D. Ds Dy A B A B, B: By C; Ca Cy D, D, D;

Shortest path trees rooted at spine nodes can form a balanced cover set
Load spread by random assignment of each service instance to one of the shared trees
Can realize significant reduction in multicast state (e.g., order of magnitude or more)

Page 15

Observations on Shared Trees

« .1laqg ECT Algorithm knobs may be used to tune trees
— Create a set of trees that use all links
— Each link used by the same number of trees (absent faults)

* VIP Default Backbone Destination address default is a single
value per |-SID (BSIGA)

* Worthwhile to study shared trees and the options for
supporting this feature

18-Sep-11

Multicast ECMP In 802.1Qbp

« So far in Qbp we have discussed the following:
— Treat multicast the same as in .1ag (one congruent SPT set)
— Provision multiple .1aqg SPT Sets (tie-breakers) in one VLAN
— Automatic selection from all possible SPTs, one per source node
— Support shared trees to address FDB scaling issues

* These are four out of many possibilities

* Need to consider benefits of supporting various options
— Better spreading characteristics
— Less configuration (e.g. fully automatic)
— Better fit with existing standards
— Abillity to control traffic placement when needed

18-Sep-11

17

ECMP Multicast Attributes

« Granularity of SPT selection?
— One (per region)
— One per source node
— N per source node
— One per address
« How many SPTs in selection set?
— One .laq tie-breaker subset
— N .l1laq tie-breaker subsets
— All SPTs
« How many group addresses?
— One per I-SID endpoint
— One per I-SID (requires shared tree)
« Selection of SPT
— Automatic (requires standard hash)
— Provisioned (may require ISIS-SPB extension)
« Assignment of I-SID to SPT
— Automatic (requires standard hash)
— Provisioned (may require ISIS-SPB extension)

18-Sep-11

Some Possible (Desirable?) Combinations

« All Automatic: maximize number of trees, spreading opportunity
— All SPTs (e.g., hash selection from ECMP)
— One SPT per source node (to keep computation tractable)
— One address per I-SID endpoint (so shared trees are not required)

« All Provisioned: minimize options, maximize control
— One .1aq tie-breaker subset
— One SPT per source node
— One address per I-SID endpoint

 Minimize multicast FDB state
— N .1aq tie-breaker trees (to provide cover set)
— N SPTs per source node
— One address per I-SID (requires shared tree)
— Provisioned (or Automatic?)

e Need to choose combinations to support in 802.1Qbp.

19

