
The XPN recovery algorithm
The XPN recovery algorithm
Mick Seaman

This note explains the thinking behind the algorithm that recovers the most-significant 32
bits of the 64-bit packet number (PN) used in the proposed GCM-AES-XPN MACsec
Cipher Suites. Only the least-significant 32 bits of the PN are conveyed in the SecTAG of
each MACsec protected frame.
__

1. Basics

Each SA (Secure Association) in the MACsec model
has a single transmitter that uses a single key (SAK) to
protect frames. In the context of this SA, every frame
transmitted has a unique packet number (PN). This
uniqueness is an absolute requirement of the Cipher
Suites used to protect the frame. If and when the
transmitter’s PN nears its maximum, a fresh SAK is
agreed, so a new SA can be used to support secure
communication. The rest of this note is concerned only
with PN use within a single SA.

2. References and Bibliography

All references to ‘1AE’ are to IEEE Std
802.1AE-2006. All references to 1X are to IEEE Std
802.1X-2010, which includes the specification of the
MACsec Key Agreement protocol (MKA).

RFC 4302 and RFC 4303 both specify the use of a
similar 64-bit Extended Sequence Number (ESN)
within the IP Authentication Header (see section RFC
4302 2.5.1 and Appendix B, RFC 4303 Appendix A).
RFC 3711 specifies the Secure Real-time Transport
Protocol (SRTP) and its use of a 32-bit ROC (Roll
Over Counter) inferred from, and used to extend, the
transmitted 16-bit sequence number. RFC 3550
describes (Appendix A.1) re synchronization on the
upper, untransmitted bits, of a sequence number.

3. Non-extended operation

The criteria advanced for choosing between minor
variants of the extended packet numbering recovery
algorithm will inevitably include notions of
consistency with the characteristics of 32-bit PN
operation. Rather than drag the latter in piece-meal to
buttress the argument for one particular point of view
or another, they are best described first, introducing a
simple model that will prove useful later.

The variables that describe PN use run from 1 to 232.
At the transmitter, the variable nextPN is the PN to be
used for the next packet to be transmitted, and is
incremented (by one) every time a packet is
transmitted. Throughout this note our focus will be on
the potential receivers of these packets, where the
variable nextPN is one greater than the highest PN so
far received. Provided the communication channel
does not lose, reorder, or repeat frames, the receiver’s
nextPN will also increment step by step.

It is useful to think of these steps in nextPN (and
related variables) as a staircase, with the height above
its foot representing the value of the variable.
Assuming the staircase to comprise a single, straight,
inclined flight of steps, we can also view the progress
of these variables by looking down at it from above.
The left hand side of Figure 1 shows one step in the
progression of nextPN, while the right hand side adds
other variables of interest, as will be presently
described.

Figure 1—PN and related variables for
non-extended operation

n = 1

n = 232

n = 1

n = 232

nextPN

lowest acceptable PN

 nextPN

replayWindow

openWindow

lateOrDelayed
Revision 2.0 June 29th 2012 Mick Seaman 1

The XPN recovery algorithm
MACsec can operate over communications channels
(such as some provider networks) that misorder
packets. This misordering, though not desirable, may
be harmless. A provider network can make use of
aggregated links that do not preserve frame ordering
as a whole, but may assign packets to links using
heuristics that ensure that all the packets between any
given end user process remain in order1. So MACsec
permits the reception of packets with PN’s earlier than
nextPN. At the same time, the receipt of much delayed
packets can disrupt user protocol operation, presenting
an attacker with an opportunity2. Many protocols have
made (often undeclared) assumptions about the
maximum network delay before packet delivery. So
MACsec’s replayWindow and replayProtect variables
provide management control: if the PN of the received
packet is less than lowest_acceptable_PN (the current
value of nextPN minus replayWindow) it will be
discarded and counted as Late (if replayProtect is set)
or received and counted as Delayed (if replayProtect is
not set). See 1AE Figure 10-5, 10.6.4, 10.6.5. Note
that the variable lowest_acceptable_PN is maintained
whether replayProtect is set or not, and there is no
conformant option that omits these parameters (1AE
Clause 5). The separate replayProtect control is
provided (rather than requiring the replayWindow to be
set to 232-1 to admit all packets) so the potential effect
of discarding late packets can be investigated (by
checking the Delayed packets counter, to see if they
are regularly received) before actually discarding them
and potentially disrupting communication—the
network manager may be unaware that packets are
being reordered on the link, or may have set the
replayWindow too small.

Figure 1 shows the replayWindow, and for our later
convenience names two other ‘windows’, not
explicitly identified in 1AE: lateOrDelayed and the
openWindow. The latter is a measure of how far the PN
value of the next packet can increase, explicitly
identifying the acceptable range of greater PN values
for successful receipt. For non-extended operation,
this is simply nextPN to 232-1.

How big should the replayWindow be? The buffering
requirement at any network node is of the order of the
bandwidth delay product3 for the flows it supports. An
upper bound for the replayWindow (measured in units
of time) might be the number of provider network
nodes traversed by our flows times the end-to-end
delay, on the extreme assumption that link aggregation
between each pair of nodes allows some of the packets
to experience no buffering delay while others
encounter the maximum. For coast-to-coast4

operation, that might be argued up to half a second or
so, for California to central Europe not much more as
there are few additional nodes. To avoid end user
protocol problems (mentioned above) packets should
not be delivered more than 2 seconds late5. So, for 100
Gb/s links, practical replayWindow sizes would appear
to range from 0 (strict in-order reception) to around
227 (1/32nd of the entire PN range) equivalent to just
over one second’s worth of minimum sized frames at
full utilization. In fact the latter is a significant
overestimate6. TCP (and all other protocols that avoid
congestion collapse7) will reduce the applied load
when timely acknowledgments are not received. A
more realistic upper bound might be given by twice
the uncongested end-to-end delay at full utilization8.
MKA allows the transmitter to communicate the
lowest acceptable PN to the receiver periodically, so
the received delay can be properly bounded and not
rely on estimates of packet size and link utilisation.

Each packet’s received PN can be compared with
against the lowest_acceptable_PN before performing
the cryptographic computation necessary to validate
the packet (and hence confirm the source of the PN).
However, to achieve the necessary packet processing
rate, multiple packets may be simultaneously in the
validation processing pipeline, and each cannot update
the nextPN and lowest_acceptable_PN until its
validation has completed (and succeeded). Thus a
further, post validation, comparison against
lowest_acceptable_PN has to be performed9.
Implementations may therefore choose to omit the
initial check, particularly if they can validate at full

1Soapbox: This capability may depend on the provider network’s ability to see some (not necessarily advertised) distance into the packet (often beyond the
headers known to much of the switching equipment along the packets path, including equipment providing security). Use of MACsec to provide integrity and
data origin authenticity (to the previous trusted hop) and not confidentiality facilitates this process. In any case confidentiality should be provided end-to-end.
2To take an old practical example, LLC Type 2 implementations would reset the link on encountering an ‘immediate duplicate’, which could happen if
proprietary bridging equipment attempted to retransmit on a lossy link at about the same time as the end station timed out and retransmitted itself.
3For acceptably low loss, assuming the applied load is controlled by an end-to-ending windowing protocol such as TCP. This buffering requirement can be
significantly reduced by the use of Congestion Notification (IEEE Std 802.1Qau, IEEE Std 802.1Q-2011 clauses 30, 31, 32.
4Continental US.
5See 1X, clause 3, bounded receive delay.
6I am reminded of this point by RFC 4302.
7Not necessarily as an apparent feature of the protocol per se. For example UDP may appear unregulated, but if it is supporting some higher acknowledgement
paradigm (RPC, for example) then the applied load will be reduced as the sender becomes burden with incomplete threads each waiting on a reply.
8Using a rough model of binary backoff with characteristic time of one end-to-end delay. One way San Francisco–London latency on a typical IP network was
150 milliseconds at the time of writing.
Revision 2.0 June 29th 2012 Mick Seaman 2

The XPN recovery algorithm
line rate. A smart attacker bent on denying service by
causing excess validation work will, in any case,
choose suitably high PN values for his bogus packets.

The model in Figure 1 comprises, as described above,
the plan view from above of a staircase of PN steps,
and the positions of current variables on those steps.
Of course the staircase need not consist of a single
straight flight of steps. The basic requirement is that
we can see them all from above, so a spiral staircase (a
helix) with a single turn from the foot to the top will
serve just as well. See Figure 2.

The arrows on the outer edge of our staircase indicate
the direction of ascent, from 1 to 232. The dashed line
between these two numbers shows where the ascent
stops on our plan view. Our ascending nextPN doesn’t
proceed to fall off the top, onto the lower steps once
more, because the transmitter stops when its nextPN
gets to 232 (indistinguishable from 0 if 32-bit counter
is used) and a packet is never sent with a PN of zero.
The steps of the staircase are shown as lying in four
quadrants, corresponding to the increasing value of the
two most significant bits of our counter, and the inner
(dashed) arrow arcs indicate the position of particular
steps relative to the one currently occupied by nextPN:
the steps of the replayWindow, the lowest acceptable
PN, the lateOrDelayed window, and the foot of the
staircase lie successively below/behind nextPN, while
the steps of the openWindow lie in front/above.

4. Extended operation

In extended operation a 64-bit PN is used, though only
the lower bits (the least-significant 32 bits) are
conveyed in each packet. The upper bits (the
most-significant 32 bits) are recovered using the
received bits and our record of recent history e.g. the
64-bit values of nextPN and/or lowest acceptable PN.
Provided that we don’t miss too many received
packets we should be able to update these. In terms of
our model we now have a spiral staircase with many
complete turns, 232 from the foot to the top, each
corresponding to an increment of the most-significant
bits of the PN variables. However we can see (in the
received packet, and in the plan view of our staircase)
only the least-significant bits. See Figure 3.

Our problem is to assign a turn number to each step in
the figure. We can’t assume that our view is
constrained to that of a complete turn beginning with
the least-significant bits all zero—the openWindow
would shrink as we approached this value and we
would never make it to the next turn. Rather the step
that we choose as the beginning of our view (and the
step almost vertically above and one turn higher that
completes it) needs to proceed around our plan view,
in advance of the current position of nextPN. In the
figure it is identified by the dashed line separating the
openWindow from the lateOrDelayed window, and
each of the areas in the figure is labelled ‘+0’ or ‘+1’
to identify the value of the 32 most-significant bits of
each step relative to that of the lowest acceptable PN
(or of nextPN, in this case shown in the figure there is
no difference).

9It could be argued that this second check could be omitted if the replayWindow is sufficiently large, but it is almost inevitable if the replayWindow is small or
zero (the latter enforcing strict ordering), and hence has to be available and budgeted for in the implementation.

Figure 2—Non-extended operation

n = 1
n = 232,0

nextPN

lowest
acceptable
PN

n31n30 = 00n31n30 = 01

n31n30 = 10 n31n30 = 11

replayWindow

openWindow

lateOrDelayed

Figure 3—Extended operation

n mod 232 = 1
n mod 232 = 0

nextPN

lowest
acceptable
PN

n31n30 = 00n31n30 = 01

n31n30 = 10 n31n30 = 11

replayWindow

lateOrDelayed

openWindow

 +0 +0

 +1

 +0

 +0

 +0 +0
Revision 2.0 June 29th 2012 Mick Seaman 3

The XPN recovery algorithm
It should be clear that there is no longer any question
of not discarding some late packets. If a packet’s PN
appears to be in and towards the leading edge of the
openWindow, when it should have been placed a turn
below in the lateOrDelayed window, then the
verification process will assume an incorrect 64-bit
PN and will discard the packet1 when it fails
validation.

How big should the lateOrDelayed window and the
openWindow be?

In non-extended operation, the lateOrDelayed window
serves a number of purposes. First, because there is no
possible openWindow interpretation of the associated
PNs, it allows late packets to be discarded. Second, it
allows the discard to occur without first requiring the
effort of attempting to perform the GCM processing
necessary for integrity checking. Third, it can assist
deployment by providing an opportunity to count the
packet discards that may occur because the
replayWindow has been made too small.

Do these points apply when considering extended
operation? The first is no reason to expand the
lateOrDelayed window at the expense of the
openWindow. The second only applies if the packet is
to be discarded anyway, and again is no reason to trade
away openWindow PN space for a lateOrDelayed
classification. The third point has more justification,
even though the original purpose arose more from the
chance opportunity provided by the need to count
every received packet once and only once. It does not,
however, require a large lateOrDelayed window, since
packets erroneously discarded because of aggressive
replayWindow limitation can be expected to fall just
behind the replayWindow. The lateOrDelayed window
can, of course, play a role in filling otherwise
unwanted PN space—just as it does in non-extended
operation—if it should prove useful to limit which
steps can serve as the beginning and ends of our
possible plan views. For example, the boundary
between the lateOrDelayed window and the
openWindow could be constrained to steps where
PN30:0 (the 31 least-significant bits of the PN) are
zero.

In extended operation, the size of the openWindow
determines how many packets can be lost before the

next packet’s PN will fall in the lateOrDelayed
window. If this should happen then, and none of the
intervening packets are received, then the
most-significant bits of the PN will never again be
recovered—at least not through receipt of data
packets. The PN of every packet subsequently
received will not be recovered correctly, the integrity
check will fail, and our recovery variables will be
stuck2.

If the SA is supported by simple physical media very
few packets should ever be lost. Of more concern are
provider network scenarios3 where there may be
recoverable faults in the communications path. For
example, the packets may be conveyed by ‘Ethernet
over Sonet’, with a 50 millisecond recovery time goal
from certain faults. We would then want the
openWindow to accommodate at least the potential
loss of 50 milliseconds worth of minimum sized
packets, so that secure communication can proceed
without PN recovery complications once the path has
been restored. Many networks include internal fault
recovery, and many of these take much longer than 50
milliseconds to recover—whether from intrinsic
limitations of the recovery mechanisms in place or
from the way those particular networks are
administered. A reasonable goal would be to size the
openWindow so that it would be likely that higher
layer protocols would themselves declare the link to
be dead before PN recovery failure occurred.
However, just as in our prior discussion of
replayWindow size, the protocols governing most of
the traffic on the link would reduce the load as
acknowledgements failed to occur. This would
indicate an openWindow that would accommodate
about 0.5 second worth of typical traffic at full
utilization for the terrestrial worst case. With 8 Tb/s
transmission and an average packet size of about 4
times minimum, an openWindow of just over 230 (i.e.
just over one quarter of a single turn on our staircase)
would suffice. For much higher bandwidth delay
products and longer outages the upper bits of the PN
would be recovered through regular MKA
transmission of the lowest acceptable PN—a
mechanism we should have in place in any case, so
there are really no possible stuck protocol states.

1The deployment controls can be set to receive the frames, noting that they are invalid, but then (of course) there is no guarantee of integrity. See 1AE 10.4,
Figure 10-5, and clauses throughout 10.6 and 10.7. validateFrames can be set to Check so that frames that fail integrity check but have not been encrypted
for confidentiality will be received but will increment the Invalid packets counter.
2Two projects are currently proposed, one to amend 802.1AE to include extended packet numbering, the other to amend 802.1X. The latter will augment the
MACsec Key Agreement (MKA) parameters so the transmitter can communicate the most-significant bits of its nextPN (or its proposed lowest acceptable PN)
periodically. Thus the stuck situation will be unjammed if it should occur. Before this capability is available a receiver that finds itself receiving, for an
extended time, only packets that fail integrity check should abandon the SA and cause another to be substituted.
3See 1AE 11.7 if you don’t understand what these are.
Revision 2.0 June 29th 2012 Mick Seaman 4

The XPN recovery algorithm
5. PN Recovery Algorithms

The following subsections (5.1, 5.3, 5.3) describe
possible alternatives for recovering the
most-significant 32 bits of the extended PN. I prefer
the first (and simplest) of these, and it is used in the
(proposed) 802.1AEbw amendment.

It has to be said that the number of gates (or processor
cycles) required to implement the most complex
conceivable PN recovery algorithms would be a
negligible fraction of those necessary for
cryptographic verification (provided that there is no
requirement to attempt multiple verifications, with
different values for the upper bits of the PN, on a
single received frame). At the same time there is no
need to complicate the life of the implementor by
requiring, for example, additional logic to perform 64
or even additional 32 bit arithmetic within a single
cycle, when even a modest amount of thought at
specification stage would achieve the same practical
effect through the logical combination of just a few
bits. It is a definite goal to simplify, and moreover to
demonstrate the simplicity of, conversion of an
existing full line rate implementation without
extended PN operation to one that has that capability.
Full line rate implementation at 10Gb/s above requires
pipelined operations and it should be clear that no
extra stages are required.

5.1 Top bit algorithm

This algorithm uses just the most-significant of the 32
least significant bits of the lowest acceptable PN and
of the PN of the received packet.

If the most significant of the lower bits (the 32 least
significant bits) of the lowest acceptable PN is set and
the corresponding bit of the received PN is not set,
then the value of the upper bits (the 32 most
significant bits) of the received PN is one more than
the value of the upper bits of the lowest acceptable PN.
Otherwise the upper bits of the received PN are those
of the lowest acceptable PN. The maximum
replayWindow size is 230-1.

Figure 4 shows how the various windows change as
nextPN and lowest acceptable PN sweep through the
quadrants (numbered by the value of the top two of the
PN’s lower bits). The replayWindow size restriction
ensures that the lowest acceptable PN and nextPN are
never more than one quadrant/90 degrees apart, and
the openWindow never comprises fewer than 230

steps.

if ((sa->lowest_PN31 == 1) && (rv.pn31 == 0))

rv.pn63:32 = sa->lowest_PN63:32 + 1;

else

rv.pn63:32 = sa->lowest_PN63:32;

One aspect of this algorithm that may give pause is the
resetting (to zero) of the lateOrDelayed window as
lowest acceptable PN30:0 passes through 0. However
since this is a very temporary condition, and any
genuinely late packets can be expected to arrive just
behind the trailing edge of the replayWindow, the
utility of the algorithm so far as highlighting cases
where the network manager has set the replayWindow
too small is hardly compromised—the absolute
number of such packets is not important. In any case
the network manager needs to be aware that the count
of packets that fail the integrity check may include
those that have been delayed as well as any that have
been physically corrupted (but have a correct CRC!)
or have been sent by a would be attacker.

Some implementation related comments follow,
though of course it is the only the externally
observable behavior that is important for conformance
to a standard—even if an internal operational model is
the most convenient way of specifying that behavior.

Figure 4—Top bit algorithm
NOTE—The ‘Lead’/‘Lag’ marking is referenced by the implementation
discussion, and is not a basic part of the rotation algorithm.

10

00

11

01

10

00

11

01

10

00

11

01

10

00

11

01

10

00

11

01

10

00

11

01

(a)

(b)

(c) (d)

(e)

(f)
LagLag

Lead Lead

LagLag

Lead Lead

LagLag

Lead Lead

LagLag

Lead Lead

LagLag

Lead Lead

LagLag

Lead Lead
Revision 2.0 June 29th 2012 Mick Seaman 5

The XPN recovery algorithm
5.1.1 Implementation note (1)

The upper bits of the received PN can only be the
upper bits of the lowest acceptable PN, or those upper
bits plus one so a full 64-bit comparison can be
avoided1 when applying the management controls for
secure verification (see 1AE Figure 10–5). Similarly
the upper bits of the received PN can only be equal to,
one less than, or one more than those of the next PN,
and these cases can be included in the above by
checking top bits:

if ((sa->lowest_PN31 == 1) && (rv.pn31 == 0))
{ rv.pn63:32 = sa->lowest_PN63:32 + 1;

if (sa->nextPN31 == 1)
assert(rv.pn63:32 > sa->nextPN63:32);

else assert(rv.pn63:32 == sa->nextPN63:32);
}

else { rv.pn63:32 = sa->lowest_PN63:32;
if (sa->lowest_PN31 == 1) && (sa->nextPN31 == 0)

assert(rv.pn63:32 < sa->nextPN63:32);
else assert(rv.pn63:32 == sa->nextPN63:32);

} }

The state inherent in the nextPN related assertions is
usefully captured in the least significant of the upper
bits of the numbers to be compared. The two least
significant bits, compared as if within a circular
sequence space, are sufficient to identify the equality,
plus one, and minus one conditions (with one ‘can’t
happen’ conditions). Comparison of the lower 32 bits
is only required if comparison of the upper bits
indicates equality.

A tabular summary may be useful:

5.1.2 Implementation note (2)

As previously described, each turn of our staircase
begins with n31:0== 0, so our plan view encompasses
either a single complete turn, or part of each of two
successive turns2— one having an even number of
turns from the foot of the staircase, and the other an
odd. Received PN values are allocated to the lead
(higher) turn or to its complement, the lag turn. For

this particular algorithm the allocation is particularly
simple (see Figure 4). If the most-significant lower bit
of the received PN (rx.PN31) is zero then the PN is in
the lead turn, otherwise the PN is in the lag turn. The
parity of each turn (the least significant of the upper
bits, rx.PN32) can be either even (0) or odd (1), and
both lag and lead can at times refer to the same turn.
When they differ one will be the odd turn and the other
its immediately preceding or succeeding even turn.
Initially:

#define Even 0 // False
#define Odd 1 // True
typedef unsigned integer32 upperBits;

upperBits turn[2] = {0, 0};
bool lead = Even, lag = Even;

Then, each time the top bit of the lowest acceptable
PN becomes set (the transition from (c) to (d) in Figure
4), advance the unused turn, and change the lead turn
(not yet used) moving it ahead:

if ((sa->lowest_PN31 == 1) && (lag == lead))
{ turn[!lead] = turn[lead]+1;

lead = !lag;
}

This incrementing of the upper bits of the lead turn
does not have to be done within the reception time of
any particular packet, all that matters is that it been
done before a subsequent packet with a clear top bit is
received, as any delay will only have the effect of
delaying the advancement of the openWindow.

Subsequently when the top bit of the lowest
acceptable PN becomes clear (the transition from (f)
to (a) in Figure 4), the lag turn catches up with the
lead:

if ((sa->lowest_PN31 == 0) && (lag != lead))
{ lag = lead;
}

1The second implementation note describes one way of doing this in more detail.

Table 1—Top bit algorithm

lowest acceptable PN31 0 0 0 0 1 1 1 1

received PN31 0 0 1 1 0 0 1 1

nextPN31 0 1 0 1 0 1 0 1

received PN63:32 -
lowest acceptable PN63:32

+0 +0 +0 +0 +1 +1 +0 +0

received PN63:32 -
nextPN63:32

+0 +0 +0 +0 +0 +1 -1 +0

2We will deal with the special case when we are looking at just part of the very first turn in the detail.
Revision 2.0 June 29th 2012 Mick Seaman 6

The XPN recovery algorithm
5.2 Semicircle algorithm1

I believe the top bit algorithm (5.1) will be entirely
appropriate for our needs. However it is worth
considering how much effort would be involved in
getting rid of the inelegant transient zero
lateOrDelayed window effect. Figure 5 shows some
more elegant PN rotation characteristics:

The openWindow always comprises the semicircle (in
our plan view) preceding (and including) nextPN.
There is now more work to be done to recover each
PN’s upper bits. The prior advantage in computing the
windows relative to the lowest acceptable PN (whose
upper bits can only be—in the top bit algorithm—one
less than, or equal to those of the recovered PN) rather
than relative to nextPN (one less than, equal to, or one
more than) no longer applies. There is a small
advantage to basing the windows on the value of
nextPN (or on its immediate predecessor, which I will
call lastPN) as now there is no need for a new
management restriction on the size of the
replayWindow—the recovery algorithm simply

imposes its own limit of 231 (greater than makes sense,
but harmless) however replayWindow has been set.

5.2.1 Implementation note (3)

Figure 5 shows the portion of our plan view occupied
by the lead and lag turns2 (see 5.1.2 for description of
these terms).

The steps lying in the openWindow above nextPN can
be identified by treating each as a two’s complement
number3.

(rx.PN > nextPN) iff (rx.PN - nextPN) > 0

However we are rather more interested in the rather
different question of which turn to pick for the
received PN. It belongs to the lead turn iff:

rx.PN31:0 < (nextPN31:0 ^ 0x80000000)

where ‘^’ denotes bit-wise exclusive-or, and the
comparison is unsigned.

The allocated turn changes as nextPN31 becomes set
(between (b) and (c) in Figure 5), so the value of the
lag variable (at least) needs to be updated at the same
time, modifying the pseudo-code (from 1AE Figure
10-5) that updates this variable as follows:

if (rv.pn >= rv.sa->next_PN)
{ if ((rv.pn + 1)31 == 1) && (rv.sa->next_PN31 == 0))

lag = lead;
rv.sa->next_PN = rv.pn + 1;
update_lowest_acceptable_PN(rv.sa->next_PN,

replayWindow);
}

thus creating a condition that we can use (as in 5.1.2)
to prompt the increment of lead turn counter, and bring
it back into use (before when all received PNs will be
assigned to the lag turn, including those at the leading
edge of the openWindow—see Figure 5 (c)):

if (lead == lag) { lead = !lag; turn[lead] = turn[lag]+1;}

1For want of a better idea for a name.

Figure 5—Semicircle algorithm

Lead

Lead

10

00

11

01

10

00

11

01

10

00

11

01

10

00

11

01

10

00

11

01

10

00

11

01

(a)

(b)

(c) (d)

(e)

(f)

Lag

Lag

Lag

Lag

Lag

Lead

Lead

Lead

Lead

Lag

2In case this isn’t readily apparent, the outer edge of the steps in the lag turn is marked in blue.
3Taking care to use 32-bit arithmetic.
Revision 2.0 June 29th 2012 Mick Seaman 7

The XPN recovery algorithm
5.2.2 Implementation note (4)

It may prove easier to use lastPN, nextPN’s immediate
predecessor, thus avoiding incrementing the received
PN (with a possible overflow to the next turn) needed
for the latter1. To avoid consequent replayWindow
complications, the highest latePN is used instead of
the lowest acceptable PN.

The received PN belongs to the lead turn iff:

rx.PN31:0 ≤ (lastPN31:0 ^ 0x80000000)

(a simple unsigned comparison).

The 1AE Figure 10-5 comparisons with the lowest
acceptable PN:

rv.PN < sa->lowest-PN

are replaced with2:

rv.PN ≤ sa->latePN

The pseudo-code for updating latePN and the
replayWindow (see 5.2.1) is replaced with:

if (rv.pn > rv.sa->latePN)
{ if ((rv.pn)31 == 1) && (rv.sa->lastPN31 == 0))

lag = lead;
rv.sa->lastPN = rv.pn;
update_latePN(rv.sa->latePN,

replayWindow);
}

and the lead turn counter is updated as for (5.2.1):

if (lead == lag) { lead = !lag; turn[lead] = turn[lag]+1;}

5.3 Top two algorithm

The semicircle algorithm may be overkill, there being
no beauty prize for maintaining the openWindow at
exactly half of our plan view. Tests based only on a
few of the most significant of our lower bits can also
maintain a more than adequate ‘zero lateOrDelayed
window’, and will require fewer gates if dedicated
logic is used3. Figure 6 shows the window rotation
when a received PN is assigned to the lead turn iff:

rx.PN31:30 < (nextPN31:30 ^ 0x2)

or

rx.PN31:30 ≤ (lastPN31:30 ^ 0x2)

The lag and lead turns still have to be advanced by per
packet logic (as for the semicircle algorithm, see 5.2.1,
5.2.2) as to do otherwise would reduce the effective

openWindow) unless additional variables or tests on
the least significant of the upper bits are added.

6. Resynchronization

It has been mentioned (above) that MKA, by
periodically communicating the lowest acceptable PN,
allows the receiver to recover from any event that has
caused a significant difference in the transmitters and
receivers values for the upper bits of each PN. RFC
3550 Appendix A.1 advocates avoiding such a
protocol dependency by simply trying the next
possible value for the upper bits if a large number of
packets are received that fail the integrity check. To

11AE used nextPN to be consistent with the transmit protection, where it proved most convenient.
2As noted in 5.1.1only the lowest two bits of the upper bits will need to be checked.
3Though the complexity may be considered trivial in either case. If the implementation uses a general purpose processor, using fewer bits may prove a worse
choice given the effort required to mask out the other bits.

Figure 6—Top two algorithm

10

00

11

01

10

00

11

01

10

00

11

01

10

00

11

01

10

00

11

01

LagLead

Lead Lead

Lead Lead

Lead Lead

10

00

11

01

LeadLead

Lead Lead

(a)

(b)

(c)

10

00

11

01

(d) (e)

Lag Lead

Lag Lag

Lag Lead

Lag Lag

10

00

11

01

(f)

Lead

Lag Lag

(f)

(g)

Lead

Lag Lag

Lead

Lag Lag

Lead

Lead

Lead
Revision 2.0 June 29th 2012 Mick Seaman 8

The XPN recovery algorithm
avoid falling prey to an attack comprising a flood of
such packets one of the packets already received (and
failing the check) is tried with the revised upper bit
values, and until that check passes no change is made
in the interpretation of subsequently received packets.
Why is such an approach not advocated for MACsec
extended packet numbering?

1) It does not meet the goal1 of ensuring that the protocol
will recover from any arbitrary state within a known,
bounded (and reasonable time) during which all
participants obey the rules of the protocol and their
transmitted frames are delivered.
Clearly trying up to 232 possible values for the upper bits
will not be a timely procedure.

2) Providing the data path and other means by which an
invalid frame (together with the instruction to use a
different assumption for the upper bits of the PN) could
be resubmitted to the verification logic is a significant
complication (and certainly a hitherto unexpressed
requirement) for full-line rate implementations
embedded in the receive data path.
Even getting hold of the invalid frame (when secure
validation is in force) and diverting it to allow
subsequent analysis could be burdensome.
If a separate processor based lower rate implementation
were to be required simply to carry out trial validations
this would impose an additional implementation cost,
and is reasonably unlikely not to be fully tested and
maintained (if implemented at all)

7. How long will 64-bits last

Are we going to be back in another 5 years looking for
ways to increase the PN number space again?

Even at 100 Tb/s the 232 PN’s in a single turn should
allow us to ride out a 50 millisecond hiatus without
relying on a supervisory protocol (such as MKA) to
recover upper bit synchronization.

At 4 Tb/s with minimum sized packets we have about
1 seconds worth of full utilization in a turn, in the
whole of the extended PN space we have about 400
years worth2. This is rather longer than recommended
reauthentication intervals that would in any case result
in a new SA (and a new number space).

1An essential aspect of good protocol design and explicitly stated in number of 802.1 protocol specifications, including MKA in 802.1X-2010.
2A second is roughly a micro-fortnight.
Revision 2.0 June 29th 2012 Mick Seaman 9

	The XPN recovery algorithm
	1. Basics
	2. References and Bibliography
	3. Non-extended operation
	Figure 1— PN and related variables for non-extended operation
	Figure 2— Non-extended operation

	4. Extended operation
	Figure 3— Extended operation

	5. PN Recovery Algorithms
	5.1 Top bit algorithm
	Figure 4— Top bit algorithm
	5.1.1 Implementation note (1)
	5.1.2 Implementation note (2)

	5.2 Semicircle algorithm
	Figure 5— Semicircle algorithm
	5.2.1 Implementation note (3)
	5.2.2 Implementation note (4)

	5.3 Top two algorithm
	Figure 6— Top two algorithm

	6. Resynchronization
	7. How long will 64-bits last

