
Summary of IEEE Std 1588TM – 2008
Optional Features Related to

Redundancy and Potentially Improved
Performance

Geoffrey M. Garner

Consultant

IEEE 802.1 TSN TG
2013.05.14

gmgarner@alum.mit.edu

Acknowledgement

q The author would like acknowledge Rune Haugom [1] for having
pointed out this issue and providing the example described in this
presentation, and also providing the figure used in slides 6 and 7

July 2013 IEEE 802.1 TSN 2

Introduction – 1
q This presentation describes a scenario (first described in

[1]) in which loss of a single Follow_Up message can lead
to sync receipt timeout
§ The scenario occurs when a Follow_Up message is lost after a Sync
message that has arrived slightly late, the next Sync message is
slightly early, and the Sync message after that is slightly late

• By late and early, we mean relative to the nominal times implied by the specified
mean Sync interval

• The behavior results from the behavior of the MDSyncReceiveSM state machine
(Figure 11-6 of 802.1AS)

q It was asked in [1] whether the behavior was intended in
802.1AS

q The scenario was discussed in the June 19, 2013 TSN call

July 2013 IEEE 802.1 TSN 3

Introduction – 2

q It was the opinion in the call that the behavior was not
intended, and that a fix is needed in 802.1AS to prevent it
§ An initial suggestion was made in the call for a simple fix to the
MDSyncReceiveSM state machine

q It was decided in the call that the item should be entered
in the 802.1 maintenance database
§ A maintenance request on this was submitted by the editor

q It was also decided in the call that the issue would be
further discussed in the July, 2013 TSN meeting
§ The present contribution was prepared for this

July 2013 IEEE 802.1 TSN 4

MDSyncReceiveSM State Machine

July 2013 IEEE 802.1 TSN 5

rcvdSync = FALSE;
upstreamSyncInterval = 2rcvdSyncPtr->logMessageInterval;

followUpReceiptTimeoutTime = currentTime + upstreamSyncInterval;

WAITING_FOR_FOLLOW_UP

rcvdSync && portEnabled
&& pttPortEnabled &&

asCapable

rcvdSync = FALSE;
rcvdFollowUp = FALSE;

DISCARD

rcvdFollowUp = FALSE;
txMDSyncReceivePtr = setMDSyncReceive (rcvdFollowUpPtr);

txMDSyncReceive (txMDSyncReceivePtr);

WAITING_FOR_SYNC

rcvdFollowUp &&
(rcvdFollowUpPtr->sequenceId
== rcvdSyncPtr->sequenceId)

rcvdSync && portEnabled && pttPortEnabled && asCapable

currentTime >=
followUpReceiptTimeoutTime

BEGIN || (rcvdSync && (!portEnabled || !pttPortEnabled || !asCapable))

Reproduced from Figure
 11-6/802.1AS

Scenario leading to sync receipt timeout – 1

Sync seqId=100

Followup seqId=100

Current state=WAITING_FOR_FOLLOWUP
currentTime=t0-125ms
New synchronization information is sent to
the portSync entity etc. which will set the
syncReceiptTimeout=(t0-125ms)+375ms =
(t0+250ms), since syncInterval=125ms.
New State = WAITING_FOR_SYNC

Current state = WAITING_FOR_SYNC
currentTime=t0
followupReceiptTimeout=t0+125ms
New state=WAITING_FOR_FOLLOWUP

Sync seqId=101

Followup seqId=101

Current state=WAITING_FOR_FOLLOWUP
currentTime=t0+124ms
124ms is an example. 125ms
(syncInterval) on D1 and D2 might not be
exactly the same.

Current state=WAITING_FOR_FOLLOWUP
currentTime=t0+125ms -> followupReceiptTimeout will occur
New state = DISCARD

Sync seqId=102

Followup seqId=102

Current state=DISCARD
currentTime=t0+250ms
New state = WAITING_FOR_FOLLOWUP

Current state=WAITING_FOR_FOLLOWUP
currentTime= about (t0+250ms)

Sync seqId=99

Followup seqId=99

syncReceiptTimeout is very close to this
value (t0+250ms) and we might get a
syncReceiptTimeout

D2 D1

July 2013 IEEE 802.1 TSN 6

q Sync interval = 125 ms
q Sync receipt timeout = 3 sync intervals
q Sync message 99 arrives; go to state

WAITING_FOR_FOLLOWUP
q Follow_Up message 99 arrives at time

t0-125 ms; go to state
WAITING_FOR_SYNC

§ Information is sent to PortSync entity, and
PortSyncSyncReceiveSM sets
syncReceiptTimeoutTime to currentTime+375 ms =
t0+250 ms

q Sync message 100 arrives at time t0 (slightly
late since it is more than 125 ms later than
previous Sync); go to state
WAITING_FOR_FOLLOWUP

§ followUpReceiptTimeoutTime set to t0+125 ms by
MDSyncReceiveSM

q Follow_Up message 100 is lost
q Sync message 101 arrives at time t0+124

ms, i.e., slightly early
§ It is ignored, because MDSyncReceiveSM is still

waiting for Follow_Up

Scenario leading to sync receipt timeout – 2

Sync seqId=100

Followup seqId=100

Current state=WAITING_FOR_FOLLOWUP
currentTime=t0-125ms
New synchronization information is sent to
the portSync entity etc. which will set the
syncReceiptTimeout=(t0-125ms)+375ms =
(t0+250ms), since syncInterval=125ms.
New State = WAITING_FOR_SYNC

Current state = WAITING_FOR_SYNC
currentTime=t0
followupReceiptTimeout=t0+125ms
New state=WAITING_FOR_FOLLOWUP

Sync seqId=101

Followup seqId=101

Current state=WAITING_FOR_FOLLOWUP
currentTime=t0+124ms
124ms is an example. 125ms
(syncInterval) on D1 and D2 might not be
exactly the same.

Current state=WAITING_FOR_FOLLOWUP
currentTime=t0+125ms -> followupReceiptTimeout will occur
New state = DISCARD

Sync seqId=102

Followup seqId=102

Current state=DISCARD
currentTime=t0+250ms
New state = WAITING_FOR_FOLLOWUP

Current state=WAITING_FOR_FOLLOWUP
currentTime= about (t0+250ms)

Sync seqId=99

Followup seqId=99

syncReceiptTimeout is very close to this
value (t0+250ms) and we might get a
syncReceiptTimeout

D2 D1

July 2013 IEEE 802.1 TSN 7

q At time t0+125 ms, followUpReceiptTimeout
occurs; go to state DISCARD

q Follow_Up message 101 arrives, and is
ignored because Sync message 101 was not
processed

q Sync message 102 arrives at time
t0+250ms; go to state
WAITING_FOR_FOLLOWUP

§ followUpReceiptTimeoutTime set to t0+375 ms by
MDSyncReceiveSM

q Follow_Up message 102 will arrive between
t0+250 ms and t0+375 ms

§ However, syncReceiptTimeoutTime is set to t0+250 ms

q Therefore, sync receipt timeout occurs at
time time t0+250 ms

§ Sync receipt timeout has occurred, even though only
one Follow_Up message has been lost

Scenario leading to sync receipt timeout – 3

q Sync receipt timeout occurred due to the loss of a single Follow_Up
message because

a)  After initial Follow_Up message was lost, the
MDSyncReceiveSM continued to wait for the Follow_Up, for the
remainder of the interval until followUpReceiptTimoutTime

b)  Since the Follow_Up receipt timeout interval is equal to the
Sync interval, this meant that the state machine waited until the
next Sync interval

c)  Unfortunately, the next Sync arrived slightly early; it was
ignored because the state machine does not process the next
Sync until it is finished processing the current Sync (or has
declared the current Sync or Follow_Up lost)

•  It was decided early in the development of 802.1AS not to require processing
of multiple outstanding Follow_Up messages (for multiple Sync messages),
to avoid complexity; this behavior is desired

July 2013 IEEE 802.1 TSN 8

Scenario leading to sync receipt timeout – 4

c)  Note that the timeout timers are based on the mean Sync
interval, which is configured; there is no allowance for variability

•  This is as desired; timeouts occur when a timer is exceeded

July 2013 IEEE 802.1 TSN 9

Possible Fix – 1

q It was suggested in the June 19, 2013 TSN call that a simple fix
would be to declare a Follow_Up message lost if it has not arrived by
the time the next Sync message arrives

q This is reasonable, because a sender sends Follow_Up
corresponding to the most recent Sync message it has sent before
sending the next Sync message
§ This is implied by the MDSyncSendSM state machine (see Figure
11-7/802.1AS-2011)
§ The order of the frames will not change on the link between the sender
and receiver, which means that Follow_Up corresponding to a Sync
message should arrive before the next Sync message

q This fix can easily be incorporated
§ See next slide for the revised MDSyncReceiveSM State Machine

July 2013 IEEE 802.1 TSN 10

Possible Fix – 2

q Add a branch out of the
WAITING_FOR_FOLLOW_UP
state back to itself, with the
condition rcvdSync &&
portEnabled && pttPortEnabled
&& asCapable

q If a new Sync message is
received before either
Follow_Up for the current Sync
is received or
followUpReceiptTimeoutTime
is reached, the
WAITING_FOR_FOLLOW_UP
state is reentered and the
followUpReceiptTimeoutTime
is reset

July 2013 IEEE 802.1 TSN 11

rcvdSync = FALSE;
upstreamSyncInterval = 2rcvdSyncPtr->logMessageInterval;

followUpReceiptTimeoutTime = currentTime + upstreamSyncInterval;

WAITING_FOR_FOLLOW_UP

rcvdSync && portEnabled
&& pttPortEnabled &&

asCapable

rcvdSync = FALSE;
rcvdFollowUp = FALSE;

DISCARD

rcvdFollowUp = FALSE;
txMDSyncReceivePtr = setMDSyncReceive (rcvdFollowUpPtr);

txMDSyncReceive (txMDSyncReceivePtr);

WAITING_FOR_SYNC

rcvdFollowUp &&
(rcvdFollowUpPtr->sequenceId
== rcvdSyncPtr->sequenceId)

rcvdSync && portEnabled && pttPortEnabled && asCapable

currentTime >=
followUpReceiptTimeoutTime

BEGIN || (rcvdSync && (!portEnabled || !pttPortEnabled || !asCapable))

rcvdSync && portEnabled
&& pttPortEnabled &&

asCapable

Additional Point

q Aside from the issue discussed in this presentation, the current state
machine is in error with respect to its current behavior
§ If the state machine is in the WAITING_FOR_FOLLOW_UP state and a
new Sync is received before the FOLLOW_UP corresponding to the
current Sync, then

• rcvdSync will be set to TRUE
• rcvdSyncPtr will now point to the new Sync that is received

§ If the Follow_Up corresponding to the current Sync is now received, the
test rcvdFollowUpPtr->sequenceid == rcvdSyncPtr->sequenceid will fail
because rcvdSyncPtr points to the new Sync while rcvdFollowUpPtr points
to the Follow_Up corresponding to the old Sync

• To achieve the desired old behavior (i.e., keep waiting for the Follow_Up, even if
a new Sync arrives first), rcvdSyncPtr should have been saved, and the saved
value used in the test on sequenceid

§ In any case, the changes on the previous slide make this problem for the
current state machine no longer relevant

July 2013 IEEE 802.1 TSN 12

Conclusion

q The revised MDSyncReceiveSM State Machine on slide 11 acheives
the behavior suggested in the June 19, 2013 TSN call, and fixes the
issue described here

q If this is acceptable to the TSN TG, this change can be inserted into
the first 802.1ASbt draft

July 2013 IEEE 802.1 TSN 13

References

[1] Emails from Rune Haugom of May 31, 2013 and June 5, 2013

July 2013 IEEE 802.1 TSN 14

