Guaranteed Latency for Control-Data-Traffic in Time Sensitive Networks

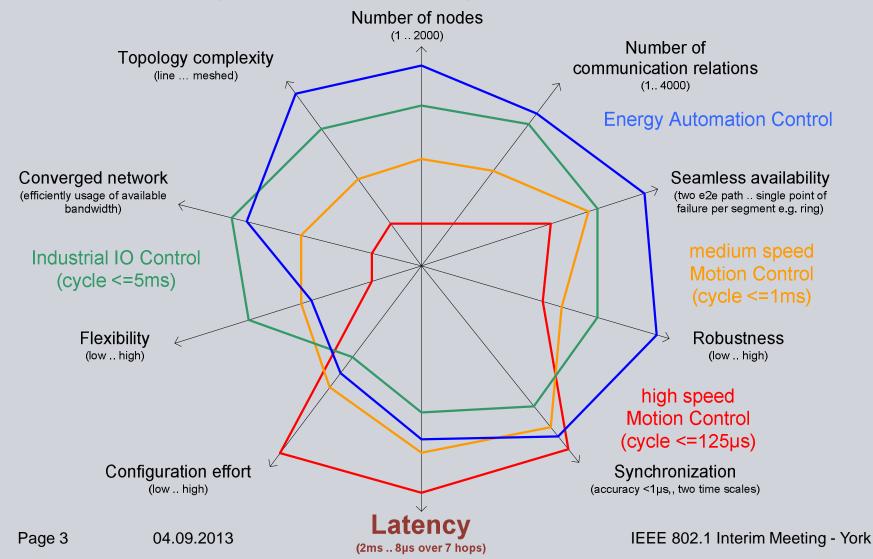
2013-09-04

-v01-

IEEE 802.1 TSN TG Meeting York - England

Presenter: Franz-Josef Goetz, Siemens AG

franz-josef.goetz@siemens.com


Structure of this Presentation

- 1. Feature Diagram for Time Sensitive Networks @ Industrial
- 2. Proposed Mechanism to Support Low Latency
- 3. Which Control Applications using which proposed Mechanism
- 4. Comparison AV-Streams <-> CD-Streams
- 5. How to guarantee low latency for Control Data Traffic (CDT)

Feature Diagram for Time Sensitive Networks (TSN)@ Industrial

See: http://www.ieee802.org/1/files/public/docs2013/new-goetz-TSN-4-Industrial-Networks-20130115-v1.pdf

SIEMENS

Proposed Mechanism to Support Low Latency for Control Data Traffic (CDT)

Common:

- Separate traffic class
 Control Data Traffic Class A or B
- Reserved bandwidth & resources (own transmission queue)

TSN bridges

- Shaper for Control Data Traffic
 - TAS
 - BL (highest priority class & bandwidth limiting)
- Pre-emption
 - Option: always wait for t max pre-emption to minimize jitter
 - Option: fragment frame size
- Cut-Through mode for Control Data Traffic

End station (talker)

Buffered interface

- one transmit buffer per stream
- Direct access from control application to write transmit buffer

Transmission modes

- Event based & rate constrained
- Scheduled (burst)
- Scheduled and coordinated (transmission time) to save resources in bridges and avoid miss ordering in network
 - Optimized make span
 - Optimize single CD-Stream (low latency)

End station (listener)

- Buffered interface
 - Static receive buffer per stream
 - Direct access from control application to read from receive buffer
 - Application is synchronized to end of exchange of all Control Data
 - Application is synchronized to single Control Data Stream

⇒ There are many mechanism to support low latency which base on each other. Not each control applications has the need of using all listed mechanism.

Page 4 04.09.2013

IEEE 802.1 Interim Meeting - York

SIEMENS

Examples How Different Control Applications Using proposed TSN Low Latency Mechanism

Application	TSN-Bridge	End Station Talker	End Station Listener	Comment
High speed motion control	TASPre-emptionCut-Through	 Buffered Interface Scheduled and coordinated transmission 	 Buffered Interface Control application is synchronized to end of Control Data exchange 	 Static configuration to get lowest latency
Medium speed motion control	 BL (highest priority class & bandwidth limiting) Pre-emption (min. fragment frame size) Cut-Through 	Buffered InterfaceScheduled (burst)	- Buffered Interface Control application is synchronized to end of Control Data exchange	- Low latency and flexibility is required (add and remove nodes)
Industrial IO control	 BL (highest priority class & bandwidth limiting) Pre-emption Cut-Through 	 Buffered Interface Scheduled or not synchronized with fix transmission period 	 Buffered Interface Application cycle is independent of Control Data exchange – oversampling is expected 	- Low latency and flexibility is required (add and remove nodes)
Process Automation	?	?	?	
Energy Automation	?	?	?	
Automotive	?	?	?	
	00.0010			torim Maating Vark

04.09.2013

IEEE 802.1 Interim Meeting - York

Comparison AV-Streams <-> CD-Streams (1)

Features	AV-Streams	CD-Streams		
Max. used bandwidth	- 75% of available bandwidth	- 20% of available bandwidth		
Transmission period (TP)	TSpecMaxIntervalFrames = frames per observation interval - Gen 1: 1 – 2^16 / 125µs (250µs) - Gen 2: flexible observation interval	 Assumption: CD-Stream class defined by application, periodical transmission Range between 31,25µs1ms 		
Typical max. frame size	- 64 1500 Bytes	- 64 500 Bytes		
Max latency	 Gen 1: 2ms for class A / 50ms for class B Gen 2: defined by application (?) range between 2ms50ms over 7 hops 	 Defined by the application In range between 8µs1ms over 7 hops (max latency typical 50% of transmission period) 		
Transmission path	 Gen 1: MSRP reservations along the RSTP Tree Gen 2: Given path by ISIS PCR (optional) 	 Given path by restricted topology (e.g. line) preconfigured path(s) (engineered, static) ISIS PCR for single path redundant routed paths (ISIS PCR) 		
Bandwidth reservation	 Guarantee resources in TSN bridges to avoid packet lost Determinism for Streams 			
Transmission by end station (talker)	- Talkers are not synchronized	 One fixed transmission period per CD-Stream class Transmission mode defined by application (time based) Event based & rate constrained (not synchronized) Scheduled (synchronized, bursts) Scheduled and coordinated (transmission time per CD-Stream) 		
Page 6 04.09.2013 IEEE 802.1 Interim Meeting - York				

Comparison AV-Streams <-> CD-Streams (2)

Features	AV-Streams	CD-Streams	
Transmission by TSN bridge	 CBSA, spread over observation interval Gen 1: 125µs, 250µs Gen 2: flexible, other shaper an in discussion 	 Currently in discussion: TAS, BL (highest priority class + bandwidth limiting), Preemption, Cut-Through, 	
Discover overload situations by metering to guarantee latency	- Gen 1: Per class on egress port by CBSA (avoid overload but can lead to additional delay)	 In discussion: Policing on ingress port per stream / per class (only on edge port per stream?) Bandwidth metering on egress port (per class) (discover and signal overload situations, avoid overload situations by limiting bandwidth per stream) 	
Receive by listener	 receive queue store for delayed presentation time (2ms 50ms) listener(s) is/are synchronized to talker (option) 	 buffered interface – static receive buffer for each stream (no delay, direct access form application) listener(s) is/are synchronized to talker (option) 	
Synchronization	- Optional	- Optional	

How to guarantee low latency for Control Data Traffic (CDT)

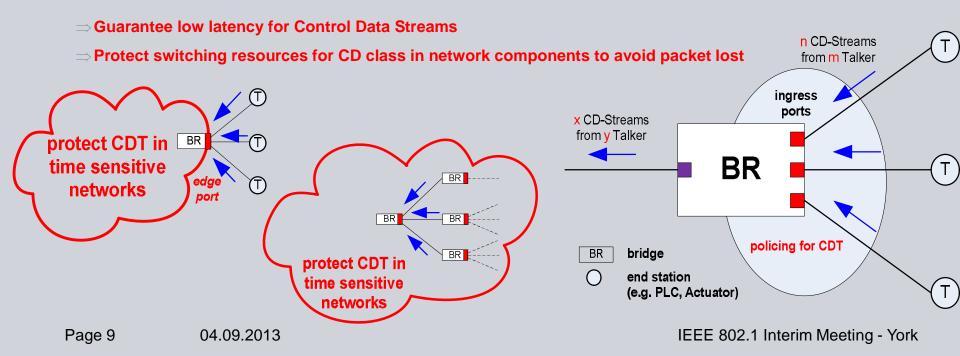
See: http://www.ieee802.org/1/files/public/docs2013/new-tsn-jochim-ingress-policing-0813-v01.pdf

Misbehave Talker

•

- Transmitting CD-Stream(s) with higher bandwidth consumption as reserved (bubbling talker, misconfiguration)
- Transmitting CD-Stream without reservation

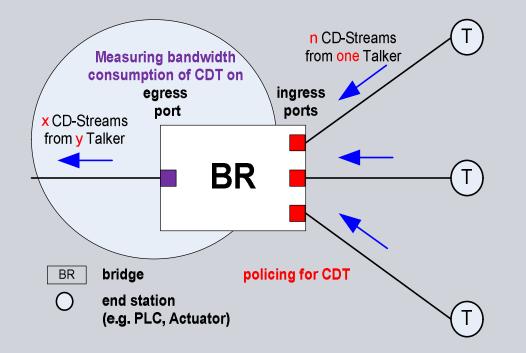
Misbehave TSN Bridge


- CD-Stream forwarded over wrong communication path (misconfiguration, wrong destination port decision)
- CD-Stream is delayed can lead to temporary overload situations
- Adding bytes (tags, padding) -> more bandwidth per stream
- Bubbling bridge (transmitting same stream multiple times)
- CD-Streams can be delayed -> traffic congestion

To guarantee low latency and to get robustness for CD-Streams a concept and mechanism are required for discovering, signaling and eliminating error situations as described

Where to do Bandwidth Metering to get a Robust Control Data Traffic Class?

- Policing (bandwidth metering) on the ingress port
 - Detect misbehave talker
 - Bubbling talker
 - Misconfigured talker
 - Detect misbehave TSN bridge
 - > Bubbling bridge (transmitting same stream multiple times)
 - > Adding bytes (tags, padding) -> more bandwidth per stream



Where to do Bandwidth Metering to get a Robust Control Data Traffic Class?

Bandwidth metering on egress port – Traffic Class

- Detection of temporary overload situations (e.g. delayed streams)
- ⇒ Guarantee low latency for Control Data Streams
- ⇒ Protect switching resources for CD class in network components

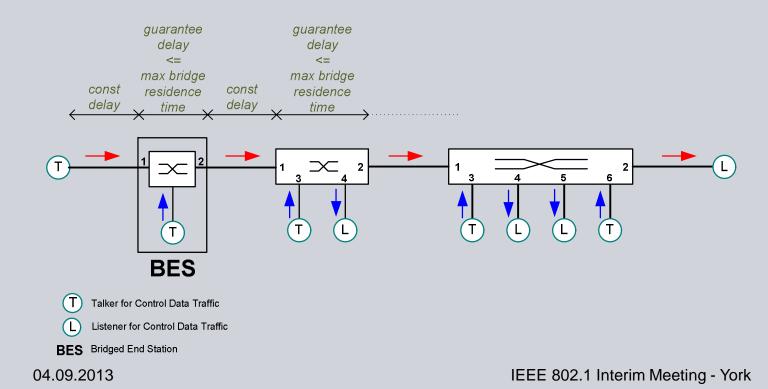
Proposal: Mechanism to guarantee low latency for Control Data Streams

SIEMENS

General: CD-Streams without reservation are blocked by TSN-Bridges

Same behavior as AV streams – streams without a reservation are blocked

Location	Discover overload situations	Action	Signaling for Diagnosis
Ingress Port	- Ingress Policing per CD-Stream	 Discard CD-Frames to limit stream bandwidth reserved bandwidth for CD-Stream 	 CD-Stream exceeds reserved bandwidth
Egress Port	- Bandwidth metering per CD-Class of multiple transmission periods (e.g. average over 3 TP)	 Discard CD-Frames to limit bandwidth to reserved bandwidth for CD-Class 	 Count discarded CD-Frames


Proposal: A further Mechanism to guarantee low latency and get a robust Control Data Class

Proposed mechanism to discover and resolve congestions:

- Timestamp CD-frames on ingress port $T_{maxTx} = T_{Rx} + maxResTime$
- \geq Check residence time on egress port
 - \rightarrow TTx <= TmaxTx -> forward CD-frame

 - TTx > TmaxTx -> discard CD-frame + signal event

THANK YOU for your attention!

Need for a mathematical model to calculate latency based on the mechanism which are in discussion!

Questions?