

P802.1Qca – D0.2 Editor's Notes

János Farkas janos.farkas@ericsson.com

July 16, 2013

D0.2 Clauses

- > 1 <u>Overview</u>
 - -1.3 Introduction
- > 2 Normative references
- 3 <u>Definitions</u>
- A Abbreviations
- > 27 Shortest Path Bridging
- > 28 ISIS-SPB Link State Protocol
- > 45 Path Control and Reservation
 - use of SPB TLVs
 - -45.1-45.5: see next slide
- Bibliography

minimal changes

D0.2 Clause 45

- > 45.1 Explicit and constrained paths
 - -45.1.1 Constrained paths: SRLG
 - -45.1.2 Explicit paths
 - 45.1.3 Point-to-point explicit path
 - -45.1.4 Explicit tree
 - -45.1.5 Notification on path status

feedback got:

problem not aimed to be solved by Qca

- > 45.2 Reservation
 - 45.2.1 Basic reservation by IS-IS: conflict resolution
 - 45.2.2 Reservation support for SRP
- > 45.3 Redundancy
 - 45.3.1 Loop Free Alternates
 - 45.3.2 Maximum disjoint paths
- > 45.4 Parameters for time synchronization: <u>updates</u>
- > 45.5 Parameters for time scheduling

Use of ISIS-SPB TLVs SPB Base VLAN Identifiers sub-TLV

It will be made clear by the conformance statements which ISIS-SPB TLVs have to be supported for 802.1Qca

- > SPB Base VLAN Identifiers sub-TLV
 - Associates an ECT Algorithm to the VLAN's Base VID
 - Dedicated ECT Algorithm for Qca: Explicit Path ECT Algorithm

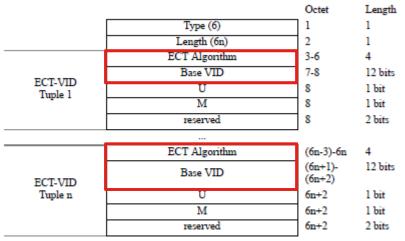


Figure 28-5—SPB Base VLAN-Identifiers sub-TLV

Use of ISIS-SPB TLVs SPBM Service Identifier and Unicast Address sub-TLV

- > SPBM Service Identifier and Unicast Address sub-TLV
 - Used for the distribution of Individual Addresses within the Domain for VLANs allocated to the SPBM MSTID

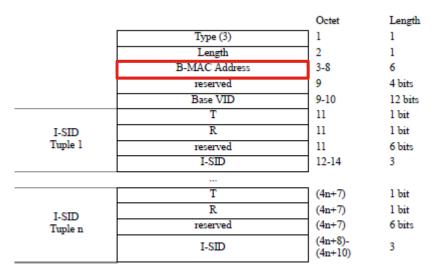
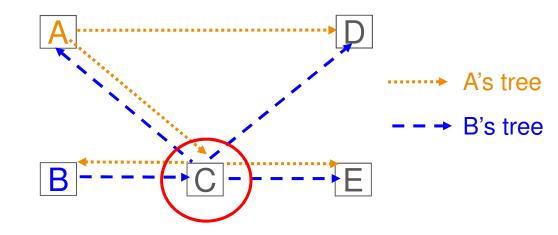



Figure 28-11—SPBM Service Identifier and Unicast Address sub-TLV

Use of ISIS-SPB TLVs SPBM Group MAC Addresses?

- Question: Do we want to use locally administered source specific Group MAC addresses on the explicit paths/trees as well in the non-learning VLANs?
- Background: Why do we use (S,G) multicast in SPB:
 - Different sources use different trees
 - A and B are Sources in the same Group
 - C should ONLY forward
 B's frames to D but
 NOT A's frames
 - (*,G) does not work,(S,G) is needed instead

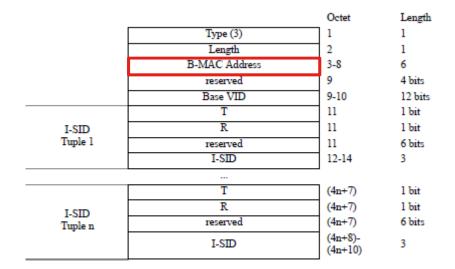
Use of ISIS-SPB TLVs SPB Instance sub-TLV

If Group MAC is source specific

SPSourceID

I-SID

then SPSourceID has to be distributed in the Domain


- SPSourceID is distributed in the SPB Instance sub-TLV
- I-SID → Base VID →
 EP ECT Algorithm

		Octet	Length
	Type (1)	1	1
	Length	2	1
	CIST Root Identifier	3-10	8
	CIST External Root Path Cost	11-14	4
	Bridge Priority	15-16	2
	reserved	17-18	11 bits
	V	18	1 bit
	SPSourceID	18-20	20 bits
	Number of Trees	21	1
	U	22	1 bit
	М	22	1 bit
	A	22	1 bit
VLAN ID Tuple 1	reserved	22	5 bits
	ECT Algorithm	23-26	4
	Base VID	27-28	12 bits
	SPVID	28-29	12 bits
		-	
VLAN ID Tuple n	U	8n+14	1 bit
	М	8n+14	1 bit
	A	8n+14	1 bit
	reserved	8n+14	5 bits
	ECT Algorithm	(8n+15)- (8n+18)	4
	Base VID	(8n+19)- (8n+20)	12 bits
	SPVID	(8n+20)- (8n+21)	12 bits

Figure 28-6—SPB Instance sub-TLV

Use of ISIS-SPB TLVs SPBM Service Identifier and Unicast Address sub-TLV for multicast

- If a single shared tree is used for a Group, then (*,G) can be applied
- Group MAC could be then distributed by the SPBM Service Identifier and Unicast Address sub-TLV
- Should we allow it?
 Should we rename the sub-TLV to SPBM Service Identifier and MAC Address sub-TLV?

Use of ISIS-SPB TLVs SPBV MAC Address sub-TLV

> SPBV MAC Address sub-TLV

 Can be used for both Individual and Group MAC Address distribution for VLANs allocated to the SPBV MSTID

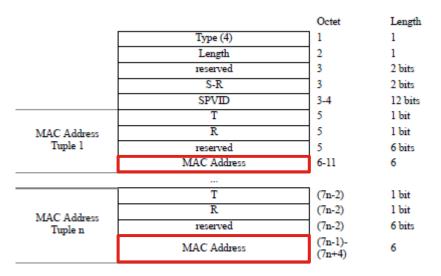
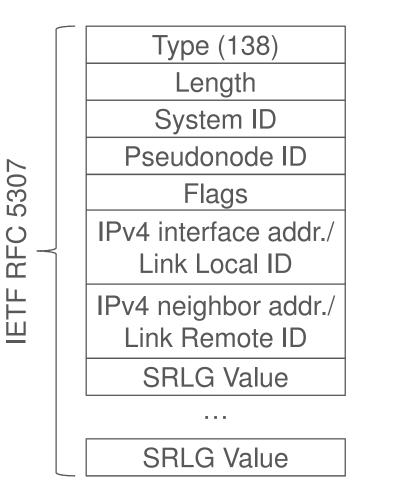
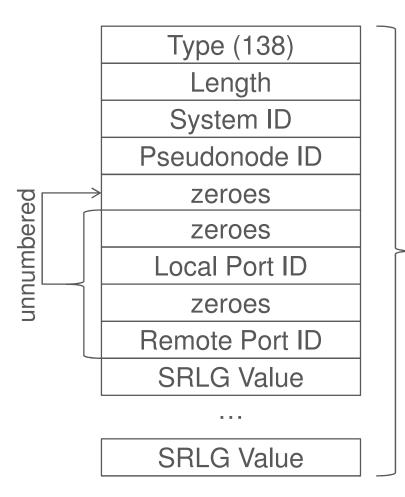




Figure 28-10—SPBV MAC Address sub-TLV

45.1.1 Constrained Paths Shared Link Risk Group (SRLG)

> Do we want to use SRLG?

802.1Qca D0.2

1

45.2.1 Basic reservation by IS-IS

- New: Conflict resolution
 - Similar to SPVID allocation conflict resolution, see subclause 27.10 and page 6 of http://www.ieee802.org/1/files/public/docs2009/aq-farkas-allocation-0518-v02.pdf
- Existing reservations are not touched
- Conflict should not occur in case of a single PCE
- > But we can have a safeguard: we can e.g. tie-break on
 - the least number of hops or nodes
 - the lowest Path ID
 - the smallest Reservation Value
 - the numerically least System ID of the originator of the LSP
 - the numerically least LSP sequence number
- > Everybody gets every LSP
 - Winner is known
 - Loser's reservation is rolled back

45.2.1 IS-IS Support for SRP

How should SRP and IS-IS interwork?

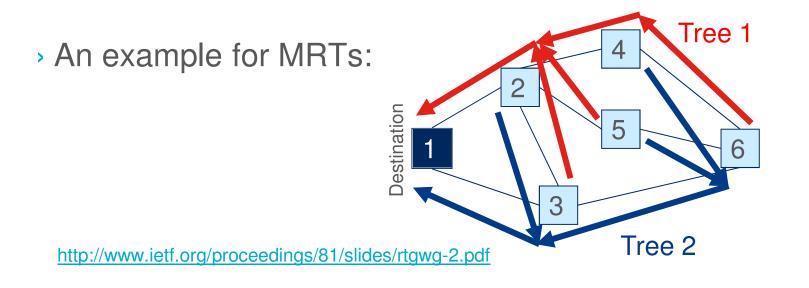
- See discussion in <u>http://www.ieee802.org/1/files/public/docs2013/ca-farkas-SRP-ISIS-interworking-0713-v01.pdf</u>
- Initial sub-TLV for now

	Octet	Length
Type (???)	1	1
Length (16)	2	1
Stream DA	3-8	6
Stream ID	9-14	6
TSpec	14-17	4
Priority	18	4 bits
Ranking	18	4 bits

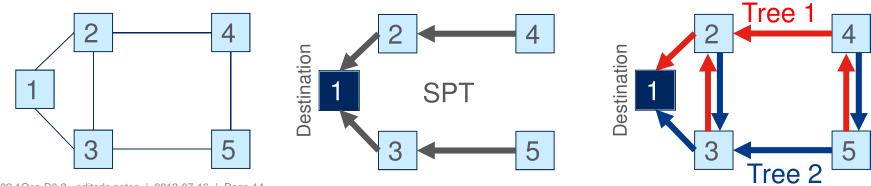
Figure 45-9—Stream sub-TLV

45.3.2 Disjoint Paths

- > Explicit Paths are not updated
 - PCE can compute the wanted paths, e.g. maximally disjoint paths
 - IS-IS installs them and does not touch them any more
 - (subclause 45.1)


• Questions:

- Do we want to leverage IS-IS automation features?
 - Define standard algorithm for disjoint path?
 - Allow careful update?
- Maximally redundant trees?
 - Do we want to go for Maximal Redundant Trees (MRT) as well or just point-to-to-point paths?
 - > MRT algorithm: <u>https://datatracker.ietf.org/doc/draft-ietf-rtgwg-mrt-frr-architecture/</u>
 - > see next slide for MRT examples


MRT examples

MRTs:

Note: MRTs may not collide with SPT, e.g.:

P802.1Qca D0.2 - editor's notes | 2013-07-16 | Page 14

45.4 Time Synchronization Parameters

- > Updated based on the input got from Geoffrey Garner, Thanks!
- > Each clock sends

	Octet
Туре (???)	1
Length ()	2
priority1	3
clockClass	Ī
clockAccuracy	Ī
offsetScaledLogVariance	Ī
priority2	Ī
clockIdentity	Ī
	-

Figure 45-10—Clock Attributes sub-TLV

Grandmasters send

	-
Type (???)	1
Length ()	2
grandmasterIdentity	
timeSource	
currentUtcOffset	
reserved	
leap59	
leap61	
currentUtcOffsetValid	
ptpTimescale	
timeTraceable	
frequencyTraceable	

Figure 45-11—Grandmaster sub-TLV