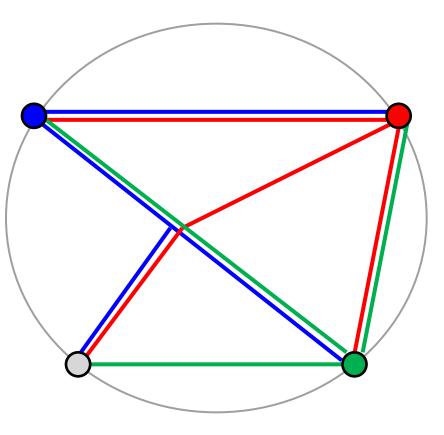


EXPLICIT ROUTING for 802.1Qca

1

Background – recap of SPB SPF routing

SPB constructs Shortest Path source-rooted (multicast) trees :


- → with a location-independent tiebreaker, go-return congruence "just happens" by construction
- → and destination-based forwarding follows that tree back to the root

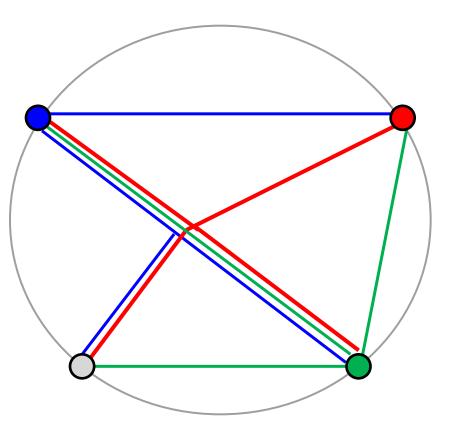
Trees are identified by an SPVID (SPBV), or source MAC (SPBM) :

- \rightarrow so SPBV uses **1** VID per edge node
- → and SPBM fully meshes the network on 1 VID per route set.

This analysis uses VID as a shorthand for "Tree" :

→ so any conclusions are valid both for FDBs populated by MAC learning or by ISIS-SPB.

Explicit Routes – first order consequences ?

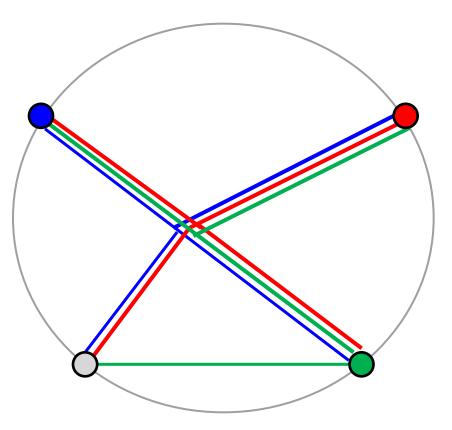

The objective of 802.1Qca is to move traffic off the shortest path :

 \rightarrow so how do we handle this ?

Moving to Explicit Routes means that go/return congruence is not an automatic consequence of the algorithm – it must be enforced by the PCE :

(the **red** tree → has been rebuilt in this diagram)

- → look at the **blue**⇔**red** paths,
- → and at the green ⇔red paths



Explicit Routes – first order consequences ?

Moving to Explicit Routes means
that congruence is not automatic
it must be enforced by the PCE

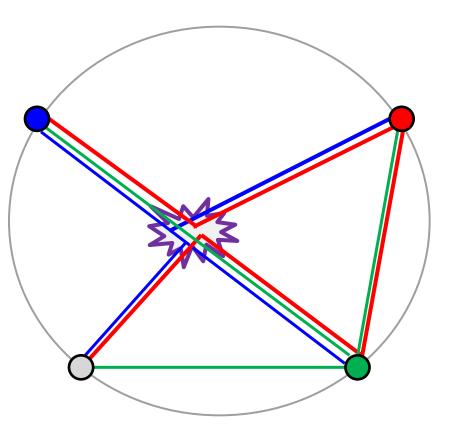
Sometimes congruence can be restored by re-routing the same trees :

→ blue and green paths to red But other routing choices can make this impossible ...

Other routing choices make this impossible ...

This is however a train-wreck :

 \rightarrow two red paths intersect or cross


 \rightarrow and cease to be simple trees.

Viewed another way :

→ there are two conflicting routes (ports) by which unicast traffic should be forwarded towards the red node.

What rules can be formulated to avoid this problem :

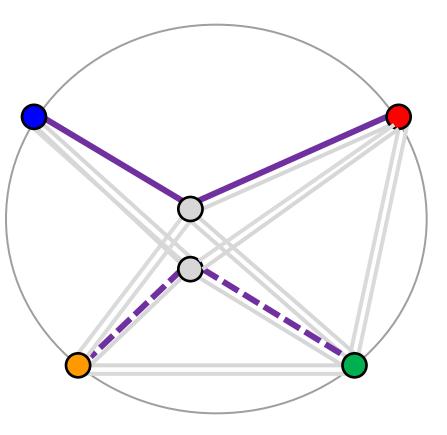
- \rightarrow straightforwardly ?
- → incrementally (to allow churn) ?

EXPLICIT ROUTING for 802.1Qca (1)

1st option : Bidirectional VIDs

This is really simple :

- → Off-SPF paths every pair-wise path is explicitly routed, and assigned a single VID (⇔)
- → and this extends naturally to (unidirectional) multicast trees.


VIDs can be reused :

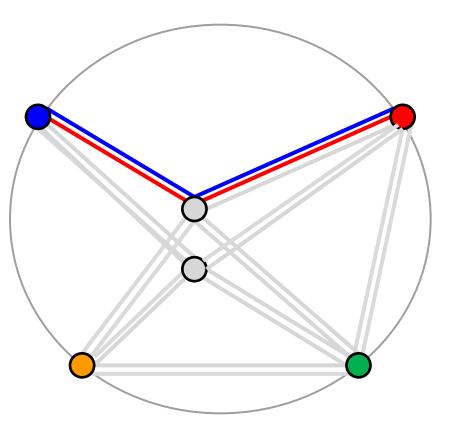
 \rightarrow provided they never meet \rightarrow

The only issue with this happy state is that the absolute limit of 4K VIDs :

→ a full mesh on only ~90 nodes,which may not scale adequately :

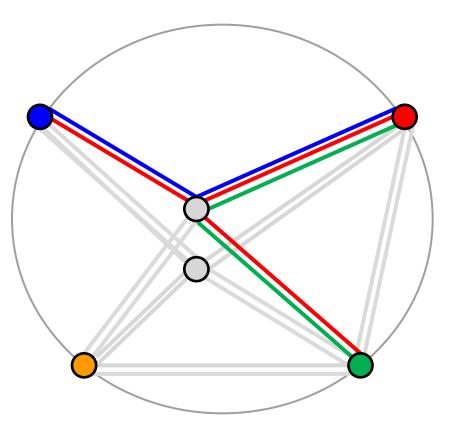
 \rightarrow so, what then ?

7


EXPLICIT ROUTING for 802.1Qca (2)

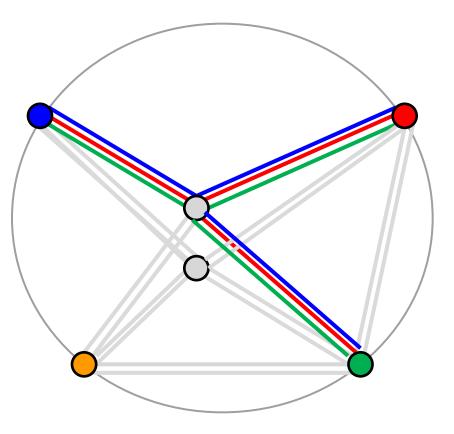
This second approach incrementally builds off-SPF trees

- → every pair-wise path must be co-routed for congruence, each root with its own VID
 - → build the red root and blue root path elements,
 - \rightarrow and that is the first p2p EP.


This directly follows SPBV practice, and is also very similar to unicast trunks running over PBB-TE.

This second approach incrementally builds off-SPF trees

- → every pair-wise path must be co-routed for congruence, each root with its own VID
 - → first build the red root and blue root path elements
 - → then extend an existing tree to add the red⇔green path
 - → which can reuse the previous red root VID for the return path



This approach incrementally builds off-SPF trees – every pairwise path must be co-routed :

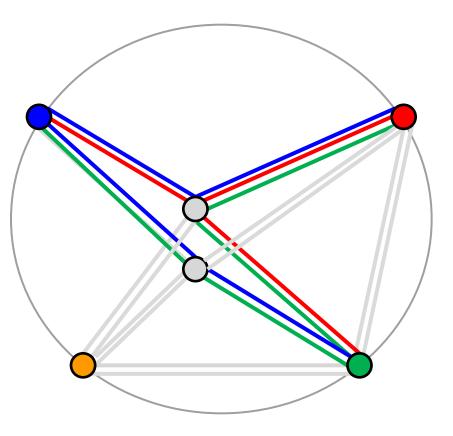
- → first build the red root and blue root path elements
- → then extend an existing tree to add the red⇔green path
- → which can reuse the previous red root VID

Adding blue⇔green connectivity can reuse already assigned VIDs :

 \rightarrow when using this routing \rightarrow

11

This approach incrementally builds off-SPF trees – every pairwise path must be co-routed :

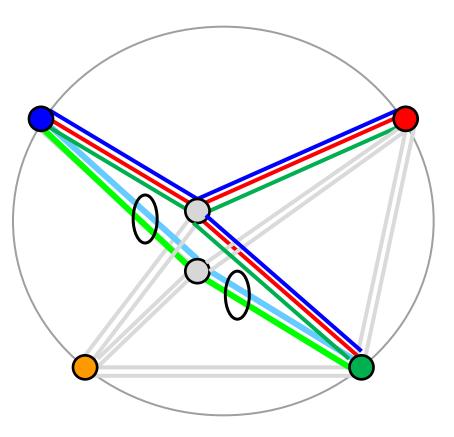

- → first build the red root and blue root path elements
- \rightarrow then add the red \Leftrightarrow green path
- → which can reuse the previous red root VID

Adding blue⇔green connectivity can reuse already assigned VIDs :

 \rightarrow or using this routing \rightarrow

The trees remain simple trees in either case :

 \rightarrow no meeting or crossing paths

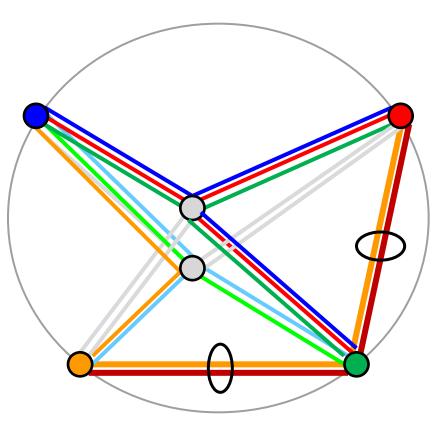

Adding blue⇔green connectivity reuses already assigned VIDs :

The trees have remained simple trees up to now.

When wishing to add a second blue⇔green route :

 \rightarrow for example; ringed (\rightarrow) new VIDs must be allocated at each end to prevent loops.

This process can be continued incrementally ...

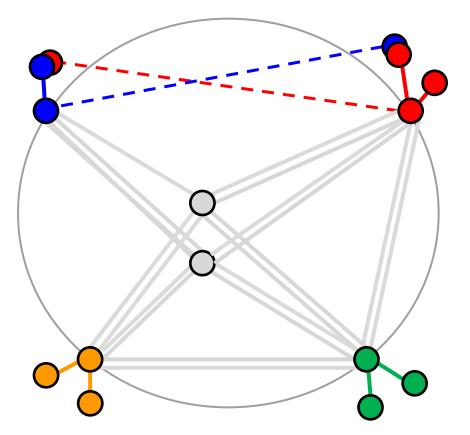


This process can be continued incrementally :

- → for example, when adding the orange⇔red route (ringed), a new VID must be assigned at the red node because it already has a route to the green node
- → but the return path to the orange node is unconstrained unless it has already installed a tree to the green node via another path.

The lesson seems to be :

- \rightarrow First use an existing tree,
- \rightarrow then extend an existing tree,
- \rightarrow only then assign a new VID.



A final thought :

802.1Qca Edge Nodes do not need their "own" VIDs :

- → they can inherit the VID of their direct adjacency in the core,
- → because a loop or a path cross cannot be formed on a single
 Ethernet link (no 1 hop µloops)
- This applies equally to multi-homed Edge Nodes :
 - → provided that they never support transit connectivity,
 - \rightarrow as enforced by the PCE(s).

Maybe there is no practical scaling issue ?

Summary

When installing off-Shortest Path routes in an 802.1Qca environment :

- → Use of a single bidirectional VID per p2p path / source-routed tree is a no-brainer up to a certain (hardish)-limited network scale :
 - \rightarrow scale is trivially guaranteed up to 4K such paths or trees;
 - → beyond that, VID reuse depends on the construct being formed :
 → multicast trees offer lower reuse potential compared to p2p paths
- → Use of a unidirectional VID per source-routed tree offers the potential of better incremental scaling properties :
 - → a single VID can support connectivity from one root to all other nodes → i.e. scaling is $O(\mathbf{N})$, not $O(\mathbf{N}^2)$, in network nodes.
 - \rightarrow VID reuse is not easy to predict, being very topology-dependant :
 - → however, in a typical (i.e. non-Fat-Tree) network, there are only a handful of useful routes across the network (~ # diverse paths through the core), and that small number of useful paths will be expected # VIDs per node.

→ Enforcing "no Transit" at the network edge where possible has the potential to substantially reduce VID consumption.

