#### 

#### Notice:

This document does not represent the agreed view of the OmniRAN EC SG. It represents only the views of the participants listed in the 'Authors:' field above. It is offered as a basis for discussion. It is not binding on the contributor, who reserve the right to add, amend or withdraw material contained herein.

#### Copyright policy:

The contributor is familiar with the IEEE-SA Copyright Policy < <a href="http://standards.ieee.org/IPR/copyrightpolicy.html">http://standards.ieee.org/IPR/copyrightpolicy.html</a>>.

#### Patent policy:

The contributor is familiar with the IEEE-SA Patent Policy and Procedures:

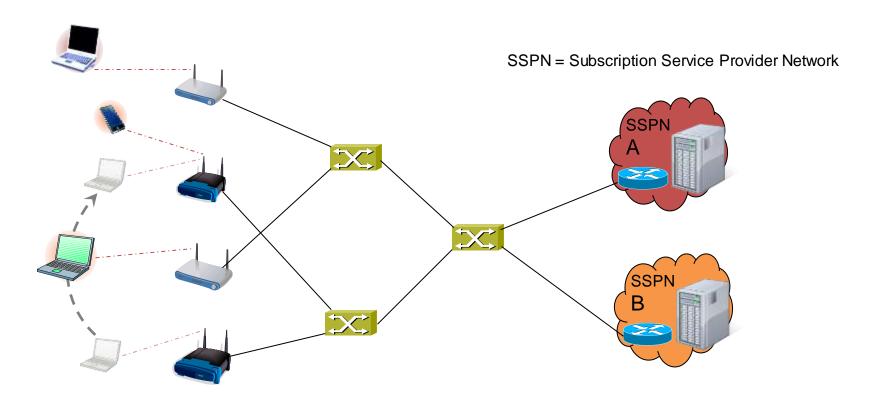
<a href="http://standards.ieee.org/guides/bylaws/sect6-7.html#6">http://standards.ieee.org/guides/bylaws/sect6-7.html#6</a> and <a href="http://standards.ieee.org/guides/opman/sect6.html#6.3">http://standards.ieee.org/guides/opman/sect6.html#6.3</a> .

#### **Abstract**

The presentation introduces the requirements of point-to-point links across bridged infrastructures and provides initial thoughts on potential solutions.

# Point-to-Point Links across IEEE 802 bridged infrastructure

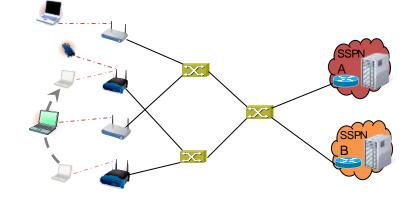
(OmniRAN Gap Analysis)


Max Riegel

NSN

#### ToC

- Access Network Scenario
  - Further considerations
- References for Link Requirements
- Bridged Access Network Solutions
  - PtP Link Solution Approaches
- MAC-in-MAC
- MACsec
- Control Plane issues
  - Link Management during a session
- Conclusion


#### Access Network Szenario



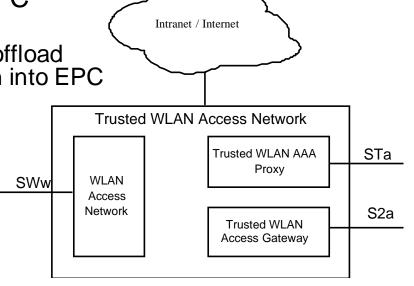
- Point-to-point link behavior is required to
  - Enforce all traffic passing through the SSPN
  - Isolate terminal communication in a shared infrastructure
- Mobility support is required in the bridged infrastructure
  - Without impacting IP connectivity, i.e. IP session has to be maintained while moving
- Point-to-point link state signalling required towards SSPN

### **Further Considerations**

- An access network may be deployed by multiple SSPNs
  - Making use of VLAN tag to segregate access domains
- An SSPN may deploy VLANs to differentiate services

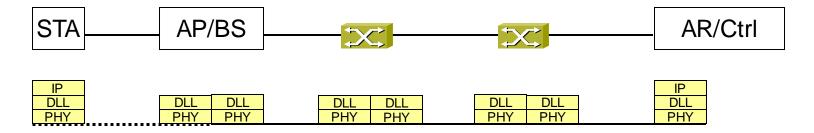


- E.g. setting up dedicated VLANs for data, guest and voice terminals
- Terminals being either end-stations or bridges eventually deploying (C-)VLAN
  - C-VLAN tag may be carried over to terminals
- Access network may be spotty and being spread across large areas
  - Making use of provider bridging to connect together disjunct access areas

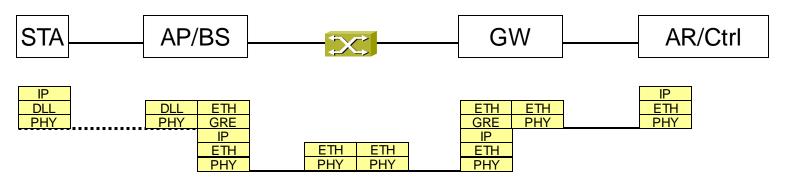

### References for Link Requirements

 3GPP Trusted WLAN Access to EPC TS 23.402 V11.6.0 (2013-03)

 Support for non-seamless WLAN offload (NSWO) or single PDN connection into EPC


Definition of a

- WLAN Access Network,
- Trusted WLAN AAA Proxy
- Trusted WLAN Access Gateway
- Requiring a point-to-point link between UE and Trusted WLAN Access Gateway across WLAN Access Network
- Requiring also link state signaling of WLAN Access Network towards Trusted WLAN Access Gateway
- Very similar requirements exist also in other access networks carrying Ethernet frames between terminal and access router
  - E.g. WiMAX




## Bridged Access Network Solutions supporting point-to-point link behavior

Access Network Model – desired solution

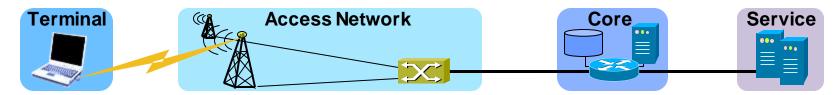


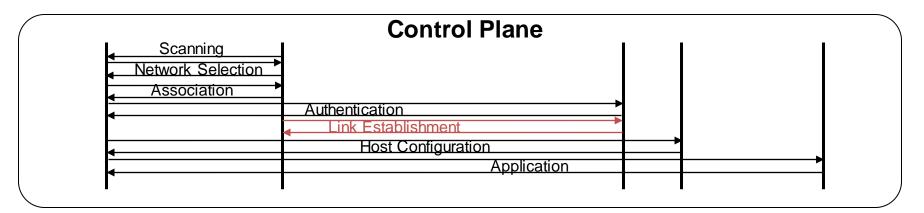
Access Network Model – nowadays real world solution

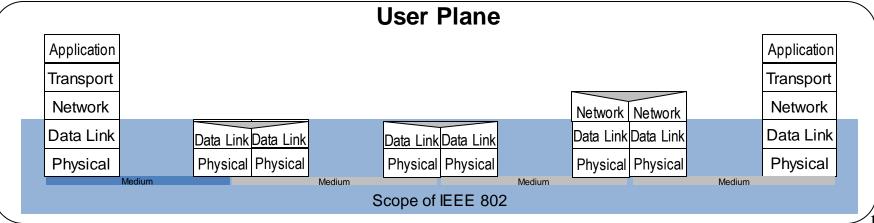


### PtP Link Solution Approaches

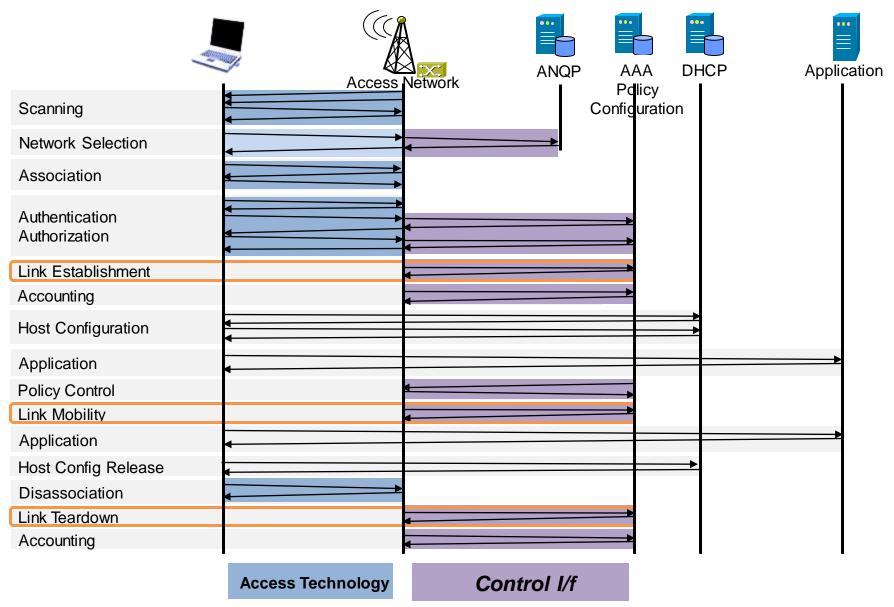
- Establish dedicated VLAN for each terminal
  - Q-in-Q
    - Scalability issue, max 4094 ptp links may not be enough
  - MAC-in-MAC
    - Seems to be feasible, for further study
- Establish secured connection for each terminal across bridged infrastructure
  - MACsec
    - Seems to be feasible, for further study


## MAC-in-MAC (Provider Backbone Bridging) Some Thoughts


- AP/BS effectively representing 'BEB'
- Link identified by B-SA + I-SID
  - B-SA uniquely correlated to terminal MAC address
    - Would it work using terminal MAC as B-SA (C-SA = B-SA)?
  - B-DA represents access router peer
  - I-SID for further study;
- Mobility support by learning B-bridges
- How would link establishment be done?
  - Which protocol to use to dynamically configure PBBN?
- Link state signaling?
- Security threats by dangling entries in filtering database in B-bridge?


## MACsec Some Thoughts

- MACsec establishes single hop across multiple bridges
- MACsec peers are terminal specific port in AP/BS and access router at the border of the access network
- Control protocol by 802.1X
  - EAP based establishment of security association
    - How to tie with EAP based access authentication
  - Well defined link state management
- Mobility support?
  - Wouldn't be a kind of 802.11r applicable to MAC sec ptp links?
- Scalability and performance issues
  - MACsec Ys well distributed on AP/BS side, however the entity at the access router peer may have to handle a huge number of sessions.
  - MACsec without confidentiality to keep performance requirements low?


## Dynamic PtP Link management adds to the Control Plane







## Link Management during a session



#### Conclusion

- Point-to-point links across bridged infrastructures are feasible
- MACsec seems to provide the more promising approach for realization of ptp links
  - Well suited control protocol available by 802.1X
  - Works across any bridged infrastructure
    - Creates single hop over multiple bridges
  - Well defined link state signaling and management
  - Further investigations necessary regards mobility support.
- Proposed next step: create a detailed functional description based on MACsec