=
>

ERICSSON

P802.1Qca D0.8 Tutorial
Explicit Path Control

Janos Farkas

\\

Preface

> This presentation is an update of
http://www.ieee802.org/1/files/public/docs2014/ca-farkas-
d0-6-tutorial-0314-v03.pdf according to the content of D0.8

> The operation presented here is not the final standard!

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 2

Outline

> Introduction

> Explicit Trees
— Tree structures
— Explicit ECT Algorithms

> Getting the trees
> Getting the VIDs

> Getting the MACs
> Summary

>

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 3

\\

\\

Presentation Objectives

> Explore the operation of explicit tree establishment as
described in P802.1Qca D0.8 through examples

> Focus on the Explicit ECT Algorithms
> Explore the features provided

> Note that this presentation and
http://www.ieee802.org/1/files/public/docs2013/ca-farkas-
d0-4-operation-v01.pdf essentially say the same just from a
little bit different angle

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 4

Highlights

» 802.1Qca is an extension to IS-IS
> It is control plane

> Main goal: establishment of explicit trees
—802.1Qca DO0.8 is suitable for more generic explicit graphs

> An explicit tree is an undirected loop free graph

> Explicit trees do not require hardware changes!

> Forwarding is made directed (unidirectional) by MAC

> Forwarding can be made directed (unidirectional) by VID

> The algorithm the PCE uses for path computation is not
specified by 802.1Qca

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 5

\\

Explicit Trees

=
>

> An Explicit Tree (ET) is controlled by a Path Computation Element (PCE) via IS-IS

> A PCE is a higher layer entity in a bridge or an end station
- A PCE may use a Path Control Agent (PCA) for the control of ETs via I1S-IS, e.g. PCE 3 - PCA 3

> An SPT Region may have multiple PCEs

> A Bridge Local Computation Engine
(BLCE) is hosted by each bridge
for (constrained) shortest path or
MRT computation

> An ET is controlled by one PCE

> An ET is either strict or loose

a4 !

— strict and loose cannot be mixed A_@)_zﬁos

Legend:

SystemID - {

SPT Bridge

CircuitiD

> A strict ET is computed and
described by its owner PCE,
and then installed by 1S-IS

> A PCE provides the descriptor of a
loose tree where each hop is a loose
hop; the ET is then computed by the
BLCEs, installed by I1S-IS

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 6

=7\

RN

s

Getting the Trees

W

\\

Topology Description

> Topology sub-TLV > This ‘translated’ version is
Type used in the following:
Length System ID 1, ; Flags Set __.1:
Format ID System ID 2 ; Flags Set 1:
VLAN Tags
VLAN Tag 1 . System ID i, ; Flags Set __-1|
Type
VLAN Tag n Length System ID n, C ; Flags Set o
Hop sub-TLV 1 |- Flags 1 byte {________//_(zo_n_st_re_iigt_ __________
Hop sub-TLV 2 System ID 1 || 6bytes
|| 4 bytes «<—— Circuit ID is Qn!y uged if parallel links
Hop sub-TLV i r_ l have to be distinguished
| DL TS _ _ !
Hop sub-TLV m { 1-bit Flags: |
Constraint sub-TLV!opt. Excude | Leaf | Root LRl viD | Girou

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 8 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

Example SPT Region
Used in The Following

21220

[4]

2144

AN

550

\\

A Strict Spanning Tree

> Each hop of a strict explicit tree

IS exactly specified by

\\

Descriptor

its descriptor

11: Root, TEP

33

Topology sub-TLV 7
POIogy // \

[
244
3]

66, 4; Circuit

77

88; Leaf, TEP

11; Root, TEP

22

44: [eaf, TEP

33

55; Leaf, TEP

P802.1Qca DO0.8 - tutorial | 2014-07-15 | Page 10

Branch 1

Branch 2

Branch 3

Figure 45-7 of D0.8 Shows a
Strict Spanning Tree

\\

> There are no parallel links in the example topology used in
D0.8 (= Circuit ID is not needed), which is the only
difference compared to the above example

Topology sub-TLV

Root
1 Branch 1 S Ll
Length =94
s prenehiz = = = A Format =0
Base VIDs = 1
Branch 3 ---c-cc-e- <>

s . ., PCP=0] VID=123 .
{ Vpe = —— 1 Hop sub-TLV: Root

/7
Hop Length =7 .
@\ p 7 sub-TLV LICRATR0S;

00001100 f<#— Root & Traffic End Point

11

1 1 1 1 Type = TBD4
22 33 2 2|, Length =7
2 3 3 A2 2 . 5 Svstem 00000000
$ - s > 9 . 33 Type = TBD4
4 4 5 Y 4 45 Type = TBD4 3 Length =7
, ; |, y Length =7 3 00001100
5 |:> “ 55 f';‘;’; —- 00000000 £ i
66 o Type = 1BD4
, <> < s s <> Type = 18D4 ks Length = 7
12 | — 1 Baet | 3 oo
66 7 66 77 4
3 4 —@— 2 s s 2 77 > Type = TBD4
C o < < . Type = 1BD4 - Length = 7
> f A . ootie Length = 7 2 000101000
000101000 S 4
End 88 3 Type = 16D4
Point = Length = 7
00000000
1 2 1 2 33
88 88 Type = TBD4
Length =7
< <> 000101000
3 55

P802.1Qca DO0.8 - tutorial | 2014-07-15 | Page 11

Tree Structures

> Ad-hoc tree

> A single tree in an arbitrary

structure, e.g.

w
11

K|

22[3]

4]

0
2144

&
\]
3166

>

>

=
>

Template trees

A set of trees following a template;
e.g. each edge bridge roots an SPT
such that Bridge 66 is excluded

N

244

1]
5502
3]

[71 [F]

88

P802.1Qca DO0.8 - tutorial | 2014-07-15 | Page 12

o
11
[l I’SI\
i1} 0l |1}
/lezz 313'3'2\ / Pl 1339
| 21 A | 21 A1
0 0
] ol >@
|1}
770 770
w e
88
[l
o
11
/PZI)
1)
A&
A 21
il
| 550
5]
770
o2
88
l

Explicit ECT Algorithms

\\

Strict Tree — ST ECT Algorithm

Loose Tree — LT ECT Algorithm

Loose Tree Set — LTS ECT Algorithm

Maximally Redundant Trees — MRT ECT Algorithm

Maximally Redundant Trees with GADAG — MRTG ECT
Algorithm

o~ b=

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 13

Strict Tree ECT Algorithm

> A single strict explicit tree
— This is the “fully nailed down” one

> All computation is done by PCE

> The descriptor fully specifies the tree
- no loose hops
- no IS-IS update on its own - static

> The owner PCE can only update the tree
— PCE has to detect topology change
— PCE computes new tree
Algorithm is only the PCE’s business
— PCE floods new descriptor

\\

> SPT Bridges have no other task but install the appropriate

FDB entries (appropriate for simple devices)

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 14

Strict Tree ECT Algorithm —
cont'd

> Branch decomposition

> Each branch is specified by an ordered list of hops

> The first hop is the Root

> Circuit ID is only used in case of parallel links (e.g. 66 & 77)

\\

Descriptor:
Installed tree: 0
11; Root, TEP 11
33 = 7 '3‘\
. e /
66, 4; Circuit — & Z
m il 1
77 /220 m332-.,
», Lm aE |
88; Leaf, TEP . g 5
11; Root, TEP g @44 202
. 2]
22 - 66z 771
44; Leaf, TEP - [[Fl 71
33 S /
— @©
55; Leaf, TEP @ s

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 15

Loose Tree ECT Algorithm Z

> A single loose explicit tree

> A loose explicit tree is always entirely loose, i.e. each hop
IS a loose hop

— If at least a hop of an explicit tree is loose, then each hop is
considered loose

— The Root and the Leaves are specified by the Topology sub-TLV
— Traffic End Points are specified by the Topology sub-TLV
— A bridge to be excluded can be specified by the Exclude flag

> BLCEs compute the tree

> Constrained routing is used if Topology sub-TLV conveys
constraint, e.g. Admin Group or Exclude

> Loose trees are restored by IS-IS

P802.1Qca DO0.8 - tutorial | 2014-07-15 | Page 16

Loose Tree ECT Algorithm
Example 1: Intermediate Root

> The tree to span
11, 44, 88, and 66:
such that 66 is the Root

> The first hop is the Root
in the Topology sub-TLV

> The Root is not a traffic
end point in this example

P802.1Qca DO0.8 - tutorial | 2014-07-15 | Page 17

Descriptor:
66; Root
11: Leaf, TEP
44: Leaf, TEP 111
88; Leaf, TEP 5 3
A N
' . ! ! i1 ,'r |
//:2"22:31L -0 _Ir—gﬂl3 L24|\\
oL JAs
1 I , I
2144 | e :
S | I
. e B
“{z66a - - - - 275y
5\ 6 ______ Ir_ _4_:74_l_|
1 2/
88
3

N

———————

Loose Tree ECT Algorithm
Example 2: Administrative Groups

\\

> The color of the link represents the Administrative Group it
belongs to

il
11
/I m\
i 1
2220 31335
/] ailli \

il i
2144 550
G 3]
\ T2 1] /
31661 21771
2L 6 aliE

Loose Tree ECT Algorithm

Example 2: Constrained R

> The Topology sub-TLV conveys an Administrative group

sub-TLV (Type = 3), which
specifies the Red group

> The descriptor specifies
that the tree to span
11, 22, 44, 88,
such that 22 is the Root

Descriptor:

22: Root
11; Leaf, TEP
44: | eaf, TEP
88; Leaf, TEP

P802.1Qca DO0.8 - tutorial | 2014-07-15 | Page 19

outing

v

Installed tree:

Kl

11
21 _[3]

/

\\

244
3]

(1 |l
212917] 71334
[4] 4] [5]
12 (1
31662 o773
[5] [6] }ZI
bl 2

Loose Tree Set
ECT Algorithm

\\

> A set of loose explicit trees
—an individual tree for each traffic end point, i.e.
— each traffic end point roots its own tree

> Each tree is computed by the BLCE of SPT Bridges

> Each tree is restored by I1S-IS in case of a topology change
> These are template trees

>» The LTS ECT Algorithm can be used

— If only a subset of edge bridges are to be connected by template
trees

— If the template trees are not SPTs because a constraint has to be
applied on them, e.g. Admin Group or Exclude Hop

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 20

LTS ECT Algorithm Z
Example: Excluding a Bridge
» Each traffic end point roots its /jgnzﬂ 33‘5[
own tree as”
]
> Bridge 66 is an Exclude Hop 0
Installed trees: oiaa
Descriptor: /
44; TEP 'y
55; TEP =
88; TEP
66; Exclude

'_'\

)

N

N

]

T
]35

]

0 =
2l 99 [3 51332
@ ala 0
[] 7] i 1]
> 55 7] 7] 44 55 [Z]
3]] 5]
]

| ///
777 775
alin /jy
Lué// 1
88 88
3

Maximally Redundant Trees
ECT Algorithm

> Maximally Redundant Trees (MRTs) are loose trees;
each MRT Root roots both an MRT-Blue and an MRT-Red

> The MRTs are computed together with the corresponding
GADAG by the BLCE of SPT Bridges

- Completely distributed operation
> MRTs are cautiously restored by ISIS-PCR

> Two options
1. Each SPT Root is an MRT Root as well
No Topology sub-TLV; in fact no 802.1Qca sub-TLV

Base VID is associated with the MRT ECT Algorithm in the
SPB Base VLAN-Identifiers sub-TLV; and that’s all

2. MRT Roots are specified by Topology sub-TLV

\\

> This is Mode A of http://www.ieee802.ora/1/files/public/docs2014/ca-farkas-mrt-0114-v01.pdf

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 22

MRT ECT Algorithm

Example: MR

> MRT Roots:

— 44 and 55 To)

To)

> [

e

o

o

o

|_

o

, =
Descriptor:

44; Root, TEP B
55; Root, TEP
88; Exclude

q—

q—

[

N

o

o

o

|_

o

=

P802.1Qca DO0.8 - tutorial | 2014-07-15 | Page 23

il
2144
1

55

MRT-Blue
11
il
71330
i
y
e il
66 7707
]

1]
550
3]

Roots Specified

MRT-Red

D770
[]

\\

550

Maximally Redundant Trees <
with GADAG ECT Algorithm =

> GADAG is computed centrally by GADAG Computer, e.g.
PCE

- Centralized GADAG computation
> GADAG Computer specifies GADAG in Topology sub-TLV

— Directed ear decomposition
— MRT Roots are also specified

> MRTs are then computed by the BLCE of SPT Bridges based
on the GADAG

—> Distributed MRT Computation

> MRTs are cautiously restored upon reception of a new
GADAG from the GADAG Computer

> This iIs Mode B of http://www.ieee802.org/1/files/public/docs2014/ca-farkas-mrt-0114-v01.pdf

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 24

MRTG ECT Algorithm =
Example -

Descriptor:

11; TEP

22

33

11 ; Leaf, TEP

22

44: Root, TEP

66

77

GADAG
GADAG Root = 11

=55

MRT Root

55: Root; TEP

33; Leaf

66, 4; Circuit

88; Exclude

77; Leaf

22

66; Leaf

77

33; Leaf

= 44

MRT Root

— Root flag indicates MRT Root
— Leafflag indicates end of ear

P802.1Qca DO0.8 - tutorial | 2014-07-15 | Page 25

Getting the VIDs

W

A VLAN's VID and
VID Direction

\\

> A VLAN is associated with a particular explicit tree by the
inclusion of the VLAN’s Base VID in the Topology sub-TLV
(preceding the Hop sub-TLVs)

> Further VIDs can be associated with the VLAN by the
SPB Instance sub-TLV (28.12.5)
> Each VID is bidirectional by default

— Each Traffic End Point bridge both Transmits (T) and Receives (R)
onaVID

— It is the default behavior - No filed for it in the sub-TLVs
> Different behavior can be configured by setting the VIDs
T/R flags in the Hop sub-TLV of the Traffic End Point
bridge

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 27

Directed VIDs

Example

> VID1 is directed to 11
> VID2 is directed from 11

Descriptor:

11; Root, TEP

VID1: R

VID2: T

33

66, 4; Circuit

77

88; Leaf, TEP

VID1: T

VID2: R

11; Root, TEP

VID1: R

VID2: T

0
2144
1

22

44: Leaf, TEP

VID1: T

VID2: R

33

55; Leaf, TEP

VID1: T

VID2: R

P802.1Qca DO0.8 - tutorial | 2014-07-15 | Page 28

220

2]
766

2133

77

A1 6]

AN

il
550
3]

2144

220

\\

11

66z

33

550

Vv
S|
N
N
||

88

Getting the MACs

W

MAC Gives Direction

> Learning VID
-VID - SPBV-MSTID
- MAC learnt from data frames

> Non-learning VID
-VID - SPBM-MSTID

- MAC associated with a VID is learnt from
SPBV MAC Address sub-TLV

- MAC associated with an I-SID is learnt from
SPBM Service Identifier and Unicast sub-TLV

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 30

\\

Directed by MAC —
Example g =

> The topology provided by the FDB entries to an Individual
MAC is a destination rooted tree within the region
(irrespectively of the means the bridges become aware of
the location of the MAC)

1]
552
3]

88
[5]

P802.1Qca DO0.8 - tutorial | 2014-07-15 | Page 31

W

Summary

\\

It Is Simple

> A very few pieces (= IS-IS TLVs) of the puzzle provide the
full picture!

> SPT Bridge declares:

— VID for explicit path control
(VID = an explicit ECT Algorithm in the SPB Base VLAN-Identifiers
sub-TLV)

—MACs it Transmits / Receives
VID scope: SPBV MAC Address sub-TLV
I-SID scope: SPBM Service Identifier and Unicast sub-TLV

> PCE provides the Explicit Tree for the VID
(Topology sub-TLV)

> Brides get all this information = install FDB entries

P802.1Qca DO0.8 - tutorial | 2014-07-15 | Page 33

Background

W

\\

Reading

> P802.1Qca Path Control and Reservation (PCR)
— http://www.ieee802.org/1/pages/802.1ca.html

— Draft 0.8: htip://www.ieee802.orq/1/files/private/ca-drafts/d0/802-1Qca-d0-8.pdf

— Tutorial on Draft 0.4: http://www.ieee802.org/1/files/public/docs?2013/ca-farkas-d0-
4-operation-v01.pdf

» |IEEE 802.1aq Shortest Path Bridging (SPB)

— 802.1Qca builds upon the architecture and concepts specified by SPB and
uses some SPB sub-TLVs (see subclause 5.4.6 of Qca);
however, full SPB implementation is not required for Qca

— http://standards.ieee.org/getieee802/download/802.1aqg-2012.pdf

— http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118148665.html

— http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5594687

— http://en.wikipedia.org/wiki/IEEE 802.1aq

> |IEEE 802.1Q (802.1Qca is an amendment to 802.1Q)
- 802.1Q-2011: http://standards.ieee.org/getieee802/download/802.1Q-2011.pdf
— 802.1Q-REV: http://www.ieee802.org/1/pages/802.1Q-rev.html

— Tutorials: http://www.ieee802.0rg/802 tutorials/2013-03/8021-1ETF-tutorial-final.pdf
http://www.ieee802.org/1/files/public/docs2014/Q-farkas-SDN-support-0314-v01.pdf

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 35

