
P802.1Qca D0.8 Tutorial

Explicit Path Control

János Farkas
janos.farkas@ericsson.com

July 15, 2014

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 2

› This presentation is an update of

http://www.ieee802.org/1/files/public/docs2014/ca-farkas-

d0-6-tutorial-0314-v03.pdf according to the content of D0.8

› The operation presented here is not the final standard!

Preface

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 3

› Introduction

› Explicit Trees

– Tree structures

– Explicit ECT Algorithms

› Getting the trees

› Getting the VIDs

› Getting the MACs

› Summary

› Background

Outline

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 4

› Explore the operation of explicit tree establishment as

described in P802.1Qca D0.8 through examples

› Focus on the Explicit ECT Algorithms

› Explore the features provided

› Note that this presentation and

http://www.ieee802.org/1/files/public/docs2013/ca-farkas-

d0-4-operation-v01.pdf essentially say the same just from a

little bit different angle

Presentation Objectives

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 5

› 802.1Qca is an extension to IS-IS

› It is control plane

› Main goal: establishment of explicit trees

– 802.1Qca D0.8 is suitable for more generic explicit graphs

› An explicit tree is an undirected loop free graph

› Explicit trees do not require hardware changes!

› Forwarding is made directed (unidirectional) by MAC

› Forwarding can be made directed (unidirectional) by VID

› The algorithm the PCE uses for path computation is not

specified by 802.1Qca

Highlights

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 6

› An Explicit Tree (ET) is controlled by a Path Computation Element (PCE) via IS-IS

› A PCE is a higher layer entity in a bridge or an end station
– A PCE may use a Path Control Agent (PCA) for the control of ETs via IS-IS, e.g. PCE 3 – PCA 3

› An SPT Region may have multiple PCEs

› A Bridge Local Computation Engine

(BLCE) is hosted by each bridge

for (constrained) shortest path or

MRT computation

› An ET is controlled by one PCE

› An ET is either strict or loose
– strict and loose cannot be mixed

› A strict ET is computed and

described by its owner PCE,

and then installed by IS-IS

› A PCE provides the descriptor of a

loose tree where each hop is a loose

hop; the ET is then computed by the

BLCEs, installed by IS-IS

Explicit Trees

Getting the Trees

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 8

› This ‘translated’ version is

used in the following:

› Topology sub-TLV

Topology Description

Circuit ID is only used if parallel links

have to be distinguished

System ID i, Circuit ID i; Flags Set

System ID m, Circuit ID m; Flags Set

System ID 2, Circuit ID 2; Flags Set

System ID 1, Circuit ID 1; Flags Set

…

…

Constraint

System ID 1

Circuit ID 1

Flags

Length

Type

6 bytes

1 byte

4 bytes

1-bit Flags:

Base VIDs

Base VID 1

Base VID n

Hop sub-TLV m

…

…

Format ID

Length

Type

Hop sub-TLV 2

Hop sub-TLV i

…

Constraint sub-TLV opt.

Hop sub-TLV 1

Further

Opt. fields

Opt.

Opt.

Opt.

Opt.

reserved Leafreserved Exclude Root
Traffic End

Point (TEP)
VID Circuit

Bit 1Bit 2Bit 3Bit 4Bit 5Bit 6

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 9

Example SPT Region
Used in The Following

22
4

32
1

33
4 5

1
23

11
2 3

1

44
1

3
2 55

1

3
2

88
1 2

3

66
5

3

2

4

1

6

77
4

3

1

2

6

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 10

› Each hop of a strict explicit tree

is exactly specified by

its descriptor

Topology sub-TLV

A Strict Spanning Tree

22
4

32
1

33
4 5

1
23

11
2 3

1

44
1

3
2 55

1

3
2

88
1 2

3

66
5

3

2

4

1

6

77
4

3

1

2

6

Descriptor

11; Root, TEP

33

66, 4; Circuit

77

88; Leaf, TEP

11; Root, TEP

22

44; Leaf, TEP

33

55; Leaf, TEP

B
ra

n
c
h

 1
B

ra
n

c
h

 2
B

ra
n

c
h

 3

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 11

› There are no parallel links in the example topology used in
D0.8 (�Circuit ID is not needed), which is the only

difference compared to the above example

Figure 45-7 of D0.8 Shows a
Strict Spanning Tree

T
o
p
o
lo
g
y
 s
u
b
-T
L
V
 c
o
n
ti
n
u
e
d

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 12

› Template trees

› A set of trees following a template;
e.g. each edge bridge roots an SPT
such that Bridge 66 is excluded

› (802.1aq SPB template = each bridge roots an SPT)

› Ad-hoc tree

› A single tree in an arbitrary
structure, e.g.

Tree Structures

22
4

32
1

33
4 5

1
23

11
2 3

1

44
1

3
2 55

1

3
2

88
1 2

3

66
5

3

2

4

1

6

77
4

3

1

2
6

22
4

32
1

33
4 5

1
23

11
2 3

1

44
1

3
2 55

1

3
2

88
1 2

3

77
4

3

1

2
6

22
4

32
1

33
4 5

1
23

11
2 3

1

44
1

3
2 55

1

3
2

88
1 2

3

77
4

3

1

2
6

22
4

32
1

33
4 5

1
23

11
2 3

1

44
1

3
2 55

1

3
2

88
1 2

3

77
4

3

1

2
6

22
4

32
1

33
4 5

1
23

11
2 3

1

44
1

3
2 55

1

3
2

88
1 2

3

77
4

3

1

2
6

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 13

1. Strict Tree – ST ECT Algorithm

2. Loose Tree – LT ECT Algorithm

3. Loose Tree Set – LTS ECT Algorithm

4. Maximally Redundant Trees – MRT ECT Algorithm

5. Maximally Redundant Trees with GADAG – MRTG ECT

Algorithm

Explicit ECT Algorithms
Table 45-1

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 14

› A single strict explicit tree

– This is the “fully nailed down” one

› All computation is done by PCE

› The descriptor fully specifies the tree

� no loose hops

� no IS-IS update on its own � static

› The owner PCE can only update the tree

– PCE has to detect topology change

– PCE computes new tree

› Algorithm is only the PCE’s business

– PCE floods new descriptor

› SPT Bridges have no other task but install the appropriate

FDB entries (appropriate for simple devices)

Strict Tree ECT Algorithm

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 15

› Branch decomposition

› Each branch is specified by an ordered list of hops

› The first hop is the Root

› Circuit ID is only used in case of parallel links (e.g. 66 � 77)

Strict Tree ECT Algorithm –
cont’d

Installed tree:

22
4

32
1

33
4 5

1
23

11
2 3

1

44
1

3
2 55

1

3
2

88
1 2

3

66
5

3

2

4

1

6
77

4
3

1

2
6

Descriptor:

11; Root, TEP

33

66, 4; Circuit

77

88; Leaf, TEP

11; Root, TEP

22

44; Leaf, TEP

33

55; Leaf, TEP

B
ra

n
c
h
 1

B
ra

n
c
h
 2

B
ra

n
c
h
 3

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 16

› A single loose explicit tree

› A loose explicit tree is always entirely loose, i.e. each hop

is a loose hop

– If at least a hop of an explicit tree is loose, then each hop is
considered loose

– The Root and the Leaves are specified by the Topology sub-TLV

– Traffic End Points are specified by the Topology sub-TLV

– A bridge to be excluded can be specified by the Exclude flag

› BLCEs compute the tree

› Constrained routing is used if Topology sub-TLV conveys

constraint, e.g. Admin Group or Exclude

› Loose trees are restored by IS-IS

› see examples in the following slides

Loose Tree ECT Algorithm

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 17

› The tree to span

11, 44, 88, and 66;

such that 66 is the Root

› The first hop is the Root

in the Topology sub-TLV

› The Root is not a traffic

end point in this example

Loose Tree ECT Algorithm
Example 1: Intermediate Root

22
4

32
1

33
4 5

1
23

11
2 3

1

44
1

3
2 55

1

3
2

88
1 2

3

66
5

3

2

4

1

6

77
4

3

1

2

6

66; Root

11; Leaf, TEP

44; Leaf, TEP

88; Leaf, TEP

Descriptor:

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 18

› The color of the link represents the Administrative Group it

belongs to

Loose Tree ECT Algorithm
Example 2: Administrative Groups

22
4

32
1

33
4 5

1
23

11
2 3

1

44
1

3
2 55

1

3
2

88
1 2

3

66
5

3

2

4

1

6

77
4

3

1

2

6

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 19

› The Topology sub-TLV conveys an Administrative group

sub-TLV (Type = 3), which

specifies the Red group

› The descriptor specifies

that the tree to span

11, 22, 44, 88,

such that 22 is the Root

Loose Tree ECT Algorithm
Example 2: Constrained Routing

22
4

32
1

33
4 5

1
23

11
2 3

1

44
1

3
2

88
1 2

3

66
5

3

2

4

1

6

77
4

3

1

2

6

22; Root

11; Leaf, TEP

44; Leaf, TEP

88; Leaf, TEP

Descriptor:

Constraint = Red

Installed tree:

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 20

› A set of loose explicit trees

– an individual tree for each traffic end point, i.e.

– each traffic end point roots its own tree

› Each tree is computed by the BLCE of SPT Bridges

› Each tree is restored by IS-IS in case of a topology change

› These are template trees

› The LTS ECT Algorithm can be used

– If only a subset of edge bridges are to be connected by template
trees

– If the template trees are not SPTs because a constraint has to be
applied on them, e.g. Admin Group or Exclude Hop

Loose Tree Set
ECT Algorithm

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 21

› Each traffic end point roots its

own tree

› Bridge 66 is an Exclude Hop

LTS ECT Algorithm
Example: Excluding a Bridge

22
4

3
2

1

33
4 5

1

2
3

44
1

3

2 55
1

3

2

88

1 2

3

77
4

3

1

2

6

22
4

3
2

1

33
4 5

1

2
3

44
1

3

2 55
1

3

2

88

1 2

3

77
4

3

1

2

6

22
4

3
2

1

33
4 5

1

2
3

44
1

3

2 55
1

3

2

88

1 2

3

77
4

3

1

2

6

44; TEP

55; TEP

88; TEP

66; Exclude

Descriptor:

Installed trees:

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 22

› Maximally Redundant Trees (MRTs) are loose trees;

each MRT Root roots both an MRT-Blue and an MRT-Red

› The MRTs are computed together with the corresponding

GADAG by the BLCE of SPT Bridges

� Completely distributed operation

› MRTs are cautiously restored by ISIS-PCR

› Two options

1. Each SPT Root is an MRT Root as well

› No Topology sub-TLV; in fact no 802.1Qca sub-TLV

› Base VID is associated with the MRT ECT Algorithm in the
SPB Base VLAN-Identifiers sub-TLV; and that’s all

2. MRT Roots are specified by Topology sub-TLV

› This is Mode A of http://www.ieee802.org/1/files/public/docs2014/ca-farkas-mrt-0114-v01.pdf

Maximally Redundant Trees
ECT Algorithm

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 23

› MRT Roots:
– 44 and 55

› 88 is not
included

MRT ECT Algorithm
Example: MRT Roots Specified

22
4

32
1

33
4 5

1
23

11
2 3

1

44
1

3
2 55

1

3
2

66
5

3

2

4

1

77
4

3

1

2

22
4

32
1

33
4 5

1
23

11
2 3

1

44
1

3
2 55

1

3
2

66
5

3

2

4

1

77
4

3

1

2

22
4

32
1

33
4 5

1
23

11
2 3

1

44
1

3
2 55

1

3
2

66
5

3

2

4

1

77
4

3

1

2

22
4

32
1

33
4 5

1
23

11
2 3

1

44
1

3
2 55

1

3
2

66
5

3

2

4

1

77
4

3

1

2

MRT-Blue MRT-Red

M
R

T
 R

o
o
t

=
 5

5
M

R
T

 R
o
o
t

=
 4

4

44; Root, TEP

55; Root, TEP

88; Exclude

Descriptor:

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 24

› GADAG is computed centrally by GADAG Computer, e.g.

PCE

� Centralized GADAG computation

› GADAG Computer specifies GADAG in Topology sub-TLV

– Directed ear decomposition

– MRT Roots are also specified

› MRTs are then computed by the BLCE of SPT Bridges based

on the GADAG

� Distributed MRT Computation

› MRTs are cautiously restored upon reception of a new

GADAG from the GADAG Computer

› This is Mode B of http://www.ieee802.org/1/files/public/docs2014/ca-farkas-mrt-0114-v01.pdf

– (Mode C can be implemented by the Strict Tree ECT Algorithm)

Maximally Redundant Trees
with GADAG ECT Algorithm

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 25

MRTG ECT Algorithm
Example

Descriptor:

GADAG
GADAG Root = 11

22
4

32
1

33
4 5

1
23

11
2 3

1

44
1

3
2 55

1

3
2

66
5

3

2

4

1

77
4

3

1

2

22
4

32
1

33
4 5

1
23

11
2 3

1

44
1

3
2 55

1

3
2

66
5

3

2

4

1

77
4

3

1

2

22
4

32
1

33
4 5

1
23

11
2 3

1

44
1

3
2 55

1

3
2

66
5

3

2

4

1

77
4

3

1

2

22
4

32
1

33
4 5

1
23

11
2 3

1

44
1

3
2 55

1

3
2

66
5

3

2

4

1

77
4

3

1

2

MRT-Blue MRT-Red

M
R

T
 R

o
o

t
=

 5
5

M
R

T
 R

o
o

t
=

 4
4

MRTs

22
4

32
1

33
4 5

1
23

11
2 3

1

44
1

3
2 55

1

3
2

88
1 2

3

66
5

3

2

4

1

77
4

3

1

2

33

11 ; Leaf, TEP
22

44; Root; TEP
66
77

66; Leaf

66, 4; Circuit

55; Root; TEP

88; Exclude

66

77

22

11; TEP

33; Leaf

77; Leaf

22

33; Leaf

33; Leaf

– Root flag indicates MRT Root
– Leaf flag indicates end of ear

Getting the VIDs

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 27

› A VLAN is associated with a particular explicit tree by the

inclusion of the VLAN’s Base VID in the Topology sub-TLV

(preceding the Hop sub-TLVs)

› Further VIDs can be associated with the VLAN by the

SPB Instance sub-TLV (28.12.5)

› Each VID is bidirectional by default

– Each Traffic End Point bridge both Transmits (T) and Receives (R)
on a VID

– It is the default behavior � No filed for it in the sub-TLVs

› Different behavior can be configured by setting the VIDs

T/R flags in the Hop sub-TLV of the Traffic End Point

bridge

A VLAN’s VID and
VID Direction

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 28

› VID1 is directed to 11

› VID2 is directed from 11

Directed VIDs
Example

Descriptor:

11; Root, TEP

33

66, 4; Circuit

77

88; Leaf, TEP

11; Root, TEP

44; Leaf, TEP

33

55; Leaf, TEP

VID1: R VID2: T

VID1: T VID2: R

VID1: R VID2: T

VID1: T VID2: R

VID1: T VID2: R

22

22
4

32
1

33
4 5

1
23

11
2 3

1

44
1

3
2 55

1

3
2

88
1 2

3

66
5

3

2

4

1

6
77

4
3

1

2
6

22
4

32
1

33
4 5

1
23

11
2 3

1

44
1

3
2 55

1

3
2

88
1 2

3

66
5

3

2

4

1

6
77

4
3

1

2
6

Getting the MACs

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 30

› Learning VID

– VID � SPBV-MSTID

– MAC learnt from data frames

› Non-learning VID

– VID � SPBM-MSTID

– MAC associated with a VID is learnt from
SPBV MAC Address sub-TLV

– MAC associated with an I-SID is learnt from
SPBM Service Identifier and Unicast sub-TLV

MAC Gives Direction

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 31

› The topology provided by the FDB entries to an Individual

MAC is a destination rooted tree within the region

(irrespectively of the means the bridges become aware of

the location of the MAC)

Directed by MAC
Example

22
4

32

1

33
4 5

1
23

11
2 3

1

44
1

3
2 55

1

3
2

88

1 2

3

66
5

3

2

4

1

6

77
4

3

1

2

6

MAC = 55

22
4

32

1

33
4 5

1
23

11
2 3

1

44
1

3
2 55

1

3
2

88

1 2

3

66
5

3

2

4

1

6

77
4

3

1

2

6

MAC = 44

Summary

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 33

› A very few pieces (= IS-IS TLVs) of the puzzle provide the

full picture!

› SPT Bridge declares:

– VID for explicit path control
(VID � an explicit ECT Algorithm in the SPB Base VLAN-Identifiers
sub-TLV)

– MACs it Transmits / Receives

› VID scope: SPBV MAC Address sub-TLV

› I-SID scope: SPBM Service Identifier and Unicast sub-TLV

› PCE provides the Explicit Tree for the VID

(Topology sub-TLV)

› Brides get all this information � install FDB entries

It Is Simple

Background

P802.1Qca D0.8 - tutorial | 2014-07-15 | Page 35

› P802.1Qca Path Control and Reservation (PCR)
– http://www.ieee802.org/1/pages/802.1ca.html

– Draft 0.8: http://www.ieee802.org/1/files/private/ca-drafts/d0/802-1Qca-d0-8.pdf

– Tutorial on Draft 0.4: http://www.ieee802.org/1/files/public/docs2013/ca-farkas-d0-

4-operation-v01.pdf

› IEEE 802.1aq Shortest Path Bridging (SPB)

– 802.1Qca builds upon the architecture and concepts specified by SPB and

uses some SPB sub-TLVs (see subclause 5.4.6 of Qca);

however, full SPB implementation is not required for Qca

– http://standards.ieee.org/getieee802/download/802.1aq-2012.pdf

– http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118148665.html

– http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5594687

– http://en.wikipedia.org/wiki/IEEE_802.1aq

› IEEE 802.1Q (802.1Qca is an amendment to 802.1Q)

– 802.1Q-2011: http://standards.ieee.org/getieee802/download/802.1Q-2011.pdf

– 802.1Q-REV: http://www.ieee802.org/1/pages/802.1Q-rev.html

– Tutorials: http://www.ieee802.org/802_tutorials/2013-03/8021-IETF-tutorial-final.pdf

› http://www.ieee802.org/1/files/public/docs2014/Q-farkas-SDN-support-0314-v01.pdf

Reading

