
CPRI “FrontHaul” requirements
continuing discussion with TSN

Peter.AshwoodSmith@Huawei.com (presenter)
Tao.Wan@Huawei.com (simulations)

Nov 2014 San Antonio, Texas

mailto:Peter.AshwoodSmith@Huawei.com
mailto:Tao.Wan@Huawei.com

Experimental Goal - ongoing
• To run the simplest possible simulation of a CPRI front

haul network.
• Make use of the TSN concepts.
• Look at the before/after results for jitter/delay.
• Understand the pros/cons involved.
• Make any recommendations on required changes to

TSN.
• Initial focus on Scheduled traffic (802.1Qbv)

simplified assumptions. I.e. perfect frequency sync, ns
level scheduling, 1 Q per CPRI connection
& no background traffic.

• Ongoing – will add more and more reality (eg
card2card delay/jitter, clock errors, encoding delays).

Network Simulator (NS-3)

• A discrete-event network simulator, targeted primarily
for research and educational use.

• Free software, licensed under the GNU GPLv2 license,
and publicly available at http://www.nsnam.org/

• Clean slate design (not based on NS-2), aiming for easy
use and extension. Written entirely in c++ with Python
wrappers.

• NS-3 models used in our simulation include, but not
limited to: core, network, Internet, UDP Echo
Application, and Flow Monitor.

http://www.gnu.org/copyleft/gpl.html

40g
2km

40g
2km

20g
1km

20g
1km

600g
5km

C-RAN

40g
2km

40g
2km

20g
1km

20g
1km

400g
5km

40g
2km

40g
2km

20g
1km

20g
1km

200g
5km

2
.4

5

4
.9

1

9
.8

3

2
.4

5

4
.9

1

9
.8

3

2
.4

5

4
.9

1

9
.8

3

2
.4

5

4
.9

1

9
.8

3

2
.4

5

4
.9

1

9
.8

3

2
.4

5

4
.9

1

9
.8

3

2
.4

5

4
.9

1

9
.8

3

2
.4

5

4
.9

1

9
.8

3

2
.4

5

4
.9

1

9
.8

3

2
.4

5

4
.9

1

9
.8

3

2
.4

5

4
.9

1

9
.8

3

2
.4

5

4
.9

1

9
.8

3

CPRI Connections PDU size = 1000 bytes

SIMULATED FRONTHAUL NETWORK

Qbv

Qbv

Qbv Qbv

Qbv Qbv Qbv

Qbv

Qbv Qbv

Qbv Qbv

Qbv

Qbv Qbv

Queue models in our simulation
• We use two queue models, namely DropTail queue and

Scheduled Queue, to study the jitter behavior of existing
Ethernet dropTail Q’s and a first crude model of the proposed
Qbv scheduled Q’s.

• DropTail queue comes with NS-3. It is a first-in-first-out queue
that drops packets at the tail. Note a couple of other queue
models are also available in NS-3, but not tested since they
primarily aim at improving TCP performance. Our testing uses a
UDP application with perfect rates to simulate three CPRI speeds
into a single DropTail queue at each egress link.

• Scheduled queues in our implementation was totally local, no
attempt to phase synch (+ delay)between neighbors, just
frequency locked (i.e. jitter reduction attempt, not delay
reduction).

Delay & Jitter for DropTail Queue

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

MinDelay

MaxDelay

Jitter x 100

DropTail Queue
PKT_LEN=1000 bytes

Flow ID

ns

Stable delays and jitters for all flows. Jitter is around 400ns.
Note date rates are 2.45, 4.91, and 9.83Gbps.

First Simple Local Scheduling Algorithm
• One queue per data flow (i.e., no queue sharing among flows), and each is processed

according to a schedule (per port)

• A schedule has a fixed cycle of constant duration, equivalent to the least common
multiplier of packet transmission intervals of all flows, and repeats infinitely (until a
new schedule is calculated and activated).

• For example, if a packet length is of 1000 bytes, a data flows of 5Gbps would have a
packet transmission interval of 1600ns, and 8Gbps flow would have an interval of
1000ns. In this case, the schedule cycle is of 8000ns. Our simulation uses three data
rates of 2.5Gbps, 5Gbps, and 10Gbps. Thus, the schedule cycle is of 3200ns for a packet
length of 1K bytes.

• A schedule cycle is divided into a number of time slots of equal size. Each slot is at least
equal to the packet transmission time of the outgoing link. (see next page for example).

• Each schedule is calculated independently for each port without any global

optimization. The scheduling algorithm further assumes that the first packets from all
flows arrive all at time 0 (i.e., when the schedule starts).

A schedule example

• Packet length = 1000 bytes

• Packet transmission intervals of 2.5Gbps, 5Gbps, and
10Gbps are of 3200ns, 1600ns, and 800ns respective (=
packet_length*8/data rate).

• Schedule cycle = lcm(3200, 1600, 800) = 3200ns.

• Packet transmission time (ptt) for 40Gbps link is 200ns =
(packet_length*8/link_speed).

• Slot size = k*ptt. For convenience, we choose k = 1.2 to
make sure a slot is always enough for transmitting a packet .
So the slot size = 240ns. Note for any k>1, (k-1)/k percent of
bandwidth is lost.

• Total number of slots = schedule_cycle / slot size =
3200/240 = 13. We further add a non-used trailing slot of
80ns (= 3200 % 240). This results in further bandwidth loss.

• Below is a schedule for this 40G link:

2
.5

G

5
G

1
0

G

40G

3

1 2 3

0 0 3 0 2 3 0 0 3 2 1 0

A schedule example (Cycle = 3200ns, packet=1000Bytes)

X

40G

1 2 3
3 0 0 3 0 2 3 0 0 3 2 1 0

C-RAN
3 4 5 6 7 8 9

1
0

1
1

1
2

2 1 0 0 0 0 3 0 0 6 0 0 200G

2.5G 5G 10G
3200ns 1600ns 800ns

TotalSlots=13, slotSize = 240ns, trail=80ns

TotalSlots=66, slotSize = 48ns, trail=32ns

A B

C D

9 0
1
2

0 0 0 0 0 0 0 2 5 6 0 8 9 0
1
1

0 3

0 0 0 0 0 3 0 0 6 0 0
1
2

0 0
1
2

0 0 0 0 0 0 9

0

3 0 0 3 0 2 3 0 0 3 2 1 0

0

4

5

6

7 8 9 1
0

1
1

1
2

3 4 5 6 7 8 9
1
0

1
1

1
2

2 1 0 0 0 0 3 0 0 6 0 0

9 0
1
2

0 0 0 0 0 0 0 2 5 6 0 8 9 0
1
1

0 3

0 0 0 0 0 3 0 0 6 0 0
1
2

0 0
1
2

0 0 0 0 0 0 9

0 0

Delay & Jitter for Scheduled Queue

All jitters are reduced to ~zero (k=1.2).
Note date rates are 2.5, 5.0, and 10.0Gbps.

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

MaxDelay

MinDelay

Jitter

Scheduled Queue
PKT_LEN=1000 bytes

ns
Flow ID

Jitter Comparison

Scheduled queue reduces all jitters to ~zero (the best case).

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Jitter (DT)

Jitter (SC)

Flow ID

ns

Maximum Delay Comparison

Scheduled queue increases delay by 4347ns in the worst case.

30000

40000

50000

60000

70000

80000

90000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

MaxDelay(SC)

MaxDelay(DT)

Flow ID
ns

Jitter for Scheduled Queue

All jitters are zero when k=1.2, or 1.5.
When k=1.1, 1.3, or 1.4, small amount of jitters appear.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

k=1.1

k=1.2

k=1.3

k=1.4

k=1.5

Flow ID

ns

Scheduled Queue
PKT_LEN=1000 bytes

Jitters for different packet sizes
(DropTail Queue)

Jitters increase when packets get larger.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

PKT=250B

PKT=500B

PKT=750B

PKT=1000B

PKT=1250B

Flow ID

ns

DropTail Queue

Jitters for different packet sizes
(Scheduled Queue)

All jitters are zero when packets are of 500Bytes and 1000Bytes.
When packets are of other sizes, some flows do have nonzero jitter.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

PKT=1250B

PKT=1000B

PKT=750B

PKT=500B

PKT=250B

Scheduled Queue

Flow ID
ns

Some Thoughts
Single DropTail queue seem to incur small amounts of jitter, and
perform consistently with different packet sizes. If background
traffic is pre-emptable then worst case would be an additional 64-
128 bits of jitter (about 1.5-3ns at 40G).

Scheduled queues have potential to nearly eliminate jitter, but
require more effort in developing advanced scheduling
algorithms. Especially difficult globally.

More than 8 scheduled queues will be required if we are to use
this method with CPRI however we still have to explore the gates
concept…

Some bandwidth will be wasted matching the input speeds to the
scheduled time slots and intervals.

Thank You

