Considerations on Ingress Policing for
802.1Qbv

Johannes Specht, Univ. of Duisburg-Essen
Soheil Samii (soheil.samii@gm.com), General Motors

rcScARCH 1

g2 DEVELOPMENT

mailto:soheil.samii@gm.com

Motivation

B Ingress policing requirements based on the traffic class

® Stream-based token bucket may be appropriate for traffic classes
with credit-based shaping and “best effort” traffic (Markus
Jochim, IEEE 802.1 TSN Plenary, Dallas, TX, November 2013 —

examples and evaluation already presented)
http://www.ieee802.org/1/files/public/docs2013/tsn-jochim-ingress-policing-1113-v2.pdf

e Urgency-based scheduler (UBS): Ingress policing is a built-in

property of the shaper (automatic threshold enforcing at egress)
http://www.ieee802.org/1/files/public/docs2013/new-tsn-specht-ubs-perfchar-1113-v1.pdf

What about the other traffic classes?

e Time-aware shaper: bandwidth only; no policing in time domain is
currently defined — examples to follow in this presentation

rReScARCH

g2 DEVELOPMENT 2 @ V

http://www.ieee802.org/1/files/public/docs2013/tsn-jochim-ingress-policing-1113-v2.pdf
http://www.ieee802.org/1/files/public/docs2013/new-tsn-specht-ubs-perfchar-1113-v1.pdf

About this slides

Content

B The next slides show multiple error cases and possible
countermeasures, i.e. mechanisms of ingress policing for 802.1Qbv.

B The mechanisms are far from being complete — more could be done on
layer 2 (protection of 802.1CB, ...).

B The mechanisms are not mapped on yet known/standardized
mechanisms but focus on what appears reasonable on layer 2 w.r.t.
802.1Qbv. Mapping can be discussed at the end of this slide set.

Note on Cut-through and Store & Forward

B The figures in this slide set show cut-through behavior for simplicity.
The explained mechanisms are applicable for both, store & forward
and cut-through bridges.

RSSTARCH 3 @

g2 DEVELOPMENT

More about this slides

Goals, Anti-Goals and Assumptions
B The goals of the mechanisms is to:

e Entirely prevent congestion/disruption of fault free streams by
faulty streams

e Enable unambiguous detection of faulty devices/prevent false
positive detection

B [tis assumed that a faulty box (end-station or bridge) send‘s arbitrary
data at arbitrary times (babbling-idiot).

B [tis not assumed that some faulty transmissions are more “unlikely”
than others, nor that some boxes fail “more unlikely” than others, etc.

B [tis assumed that at most one box can fail at a time (single fault
assumption).

B Itis not a goal to “magically repair” faulty streams. These are
considered as broken, faulty, non-trustworthy, non-repairable, lost
[PERIOD]

RSSSARCH A <3

g2 DEVELOPMENT

WHAT DOES NOT WORK FOR
802.1QBV

11/6/2014 5

Token bucket alone does not work for TAS

Token Bucket: Fault Free Yy ~—1
El:egress [l B R // E1 11 E3 | ”
12
11:token leve — — — E
E2:egress L A s B2
E3:queue_§§
E3:gate 711 M I
E3egress fl G PA E)
Token Bucket: DeIay T Delayed Packets
rlzflefgr:ﬁzs 4 | Token limit reached, but this does not affect
M — | delayed packet acceptance
lI1:token level —
E2:egress 1 VA
E3:queue_ [l I ﬁ -ﬂ_> Delaye.d packet 2 of B1 (faulty) gongests the
E3:gate "] |—| M . —, / queue: Packets 2, 2 and 3 sent in wrong
E3e | B2 51 Bl windows
gress l_ .

reference 1. .1

[&
RESEARCH 6 RINF

WHAT MAY WORK FOR 802.1QBV

11/6/2014 I

Part 1 - Timing

1. Ingress Windows

Extend the 802.1Qbv gate-states by an ingress open/close flag, i.e. ingress gate:
B Open: Accept consecutive started packets until next ingress close

B Close: Discard consecutive started packets entirely

Implication:
Common time for egress and ingress operation at the same port

2. Octet Limits
Add octet limits associated with ingress windows and common octet counter:

B Increase octet counter by octets of packets started after transition to open
until associated octet limit is reached

B Cutthrough: Discard octets octet limit is exceeded

Store and Forward: Discard packet if octet limit is exceeded

B Clear octet counter and current octet Limit at transition to close

rReScARCH 8

g2 DEVELOPMENT

Ingress windows

Token Bucket: DeIay iy 81 1.
El:egress // E1 I1 E3 | g
reference {1. [12

11:token leve — — —, E
E2:egress 1 3 | B2
El
E3: queue_ﬂ_g_
E3: gate_l I_I

E3:egress
reference 1.

With Part 1: Delay

El:egress_ [l f—ﬂ--l --E-]:‘r_,

2 £}

reference 5

Ingress open > Accept packet 1
Octet count increased by packet 1
Ingress gate closes - Sets octet count to 0

o I T e ——,

Delayed packets 2 and 3 arrive during closed
ingress window -> Entirely discarded

reference 1- 2:

—c= ?
RESEARCH 9 RINF

Ingress Windows vs. Octet Limits

Both needed

Ingress windows (receiver) must be wider than egress packets (sender) to
avoid false positive reactions:

B PTP clocks are not 100% equal, even in the fault free case
B 802.1Qbv implementations may ,,narrow” the configured event times

B Allowed variances of packet/octet duration (+-100ppm or more),
preamble length, etc. before being rejected otherwise

In case of faults, a sender can transmit more octets in one ingress window
than expected before the end of the window is reached

B Octet count synchronized to packet reception can limit the exact number
of octets in a window

B Windows sizes/expected number of octets can differ per window at one
egress port = Each ingress window requires an associated octet limit

RSSTARCH 10 @ ’S'F‘f

g2 DEVELOPMENT

Fault Free Case

R1 | L
| EL 1L ED

Variances (PTP,
802.1Qbv, ...)

|\

E2: gate .
El:egress M L
: I1:gate / \ NN
Scheduling: 7 < y___
Egress windows N
aligned to the end of
corresponding |1: #octets 7 S
ingress windows (or 11 forward 11|
later) prevents _ % ----- -
increasing window 2':72' gate s ; e
size (tolerance) E2: egress L T

along path v

Assumption
ingress and egress clocks in one bridge are equal

RESSARCH 11 @ 555_:

g2 DEVELOPMENT

Faults covered by Ingress Window

N

Starts before
ingress window

|// [EL 1L ED

Starts in ingress

Starts out of
ingress window

-~ Entirely window - Entirely
discarded - Ok discarded Expected - ok
e e S ——
|1:gate —,
|1: #octets >
11: forward 2 N
E2: gate | >
E2: egress 2 N
N AN L >

rcScARCH

g2 DEVELOPMENT

Faults covered by Octet Discarding

B/ |

s =
/7 IEL 11 E2
Exceeds octet limit Starts in ingress Starts in ingress window but
- Octets window and below exceeds the end of the
discarded octet limit 2 Ok window = Octets discarded
El.egress g_g_,
I1:gate —,
Assumed to be ok:
|1: #octets > | gLal'[r;/g:nS);[\:veaa)/m =
I1: forward PR . | . Stays within
E2: gate IJ----T- ;// planned limits , i.e.
E2: egress 1 E0 HEER cannot congest
- other streams.

1 Lo

(Yet) Uncovered Faults ...

|77 JFt 1 E2
sent by B1 in an 2 sent by Bl in an
egress window of egress window of
a red packet (does a packet
not exceed octet (does not exceed
limit). octet limit).

I1.gate

Elegress L0 /_.
1 .
| .

|1: #octets

|1: forward 1
E2: gate

E2: egress "1

RESSARCH 14

g2 DEVELOPMENT

... why this is a problem

B, B2 B3 1,
|/7 |E |1\)_ E2 | g
: : : 13
Oversized packet 1 arrives in E3
(sufficient large) ingress h
window of I:
Packet 1 ... while another packet 1 arrives
enqueued at E2 ... || from fault free bridge B4.
El:egress 1 >
11:gate >
E3: egress 1 >
E2: queue _l_+
E2: gate v Y R
E2: egress >

1 exceeds the window size planned for packet 1
- packet 1 is not transmitted, queue at E2 blocked forever

Octet limits/counter not shown to simplify the illustration.

REScARCH 15 @ «ﬁf

g2 DEVELOPMENT

Part 2 - Masquerading

3. Masquerading Filters
Associate forwarding information with each ingress window to:
B Unambiguously identify:
a. The entire scheduled path to the listener(s)
b. All scheduled egress queues on the path to the listener(s)
B Discard packets starting in ingress window in case of mismatch

rcScARCH 16

g2 DEVELOPMENT

Faults covered by Masquerading Filters

Detects that packet
an packet
arrives in the
window of a red
packet and vice
versa.

rcScARCH

g2 DEVELOPMENT

R"-Zl L,

| // |E1 11 E2
El:egress -1 _.
|1:gate —,
|1: #octets >

11: masq Y, > :

E2: gate | >
E2: egress >

17

Why local forwarding information (port map,
etc.) would be insufficient

Masquerading filter
in B1 based on
e.g. port map —
does not detect the
wrong packets

rcScARCH

g2 DEVELOPMENT

>
-

\ R1
_73/!: = |0\! ERAVARR AV
:
i
1
—
EO:egress L —’
10:gate —___] >
10: #octet >
10: masq. [:’-{7_/27_-_-_-_-_-__7_/2;_/7_/2/-{7_ A >
El: gate
El: egress 1

I1:gate L | |

|1: #octets

Masquerading
filterin B2 will
detect the wrong
packets BUT
cannot identify that
BO was faulty, i.e.
B2 may classify B1
as faulty (false
positive)

|1: masq.

18 @»ﬁf

Mapping the mechanisms to standard(s)

Octet Limits: Is MEF 10.3 the right tool?

B Specified to operate octet-accurate?

Writable token/octet levels at ingress open/close events?
Tokens added at rate=0 (i.e. not automatically added over time)?
Red&green-only operation?

Continuous operation for cut-through (or is the combination TAS+cut-
through+policing useless at all — at least Automotive use seems
unlikely)?

Input Windows/Gate Events: 802.1Qbv?
Masquerading Filters — Circuits & Stream Gates?

REScARCH 19 @

g2 DEVELOPMENT

Thank you for your Attention!

Questions, Opinions, Ideas?

Johannes Specht
Dipl.-Inform. (FH)

Dependability of Computing Systems Schuetzenbahn 70
Institute for Computer Science and Room SH 502
Business Information Systems (ICB) 45127 Essen

Faculty of Economics and GERMANY

Business Administration T +49 (0)201 183-3914
University of Duisburg-Essen F +49 (0)201 183-4573
Johannes.Specht@uni-due.de 3&(
http://dc.uni-due.de

rcScARCH 20

g2 DEVELOPMENT

mailto:Johannes.Specht@uni-due.de
http://dc.uni-due.de/

