RESTful APIs and 802.1Qcc

Rodney Cummings
National Instruments

IEEE 802.1, May 2016, Budapest

Agenda

« What is a RESTful API?
* How can RESTful apply to 802.1Qcc?
* Whatis CoAP?

IEEE 802.1, May 2016, Budapest 2

e
Premise of this Presentation

* Configuration of TSN requires protocol(s)

 Past TSN work has focused on invention
 Create a new protocol from scratch
* Publish in 802.1 or elsewhere, but that's just the 15t step

« Momentum requires open source, tools, OS integration, etc
* Challenging to find companies who are willing to invest
* MRP and IS-IS struggle to this day

 What if we could find an existing protocol?

 millions of active users... huge software development community...
plenty of open source... ships with every operating system...

» Maybe The Internet can help

IEEE 802.1, May 2016, Budapest

What is HTTP?

* Foundational protocol of The Internet (web)

 Request/response (client/server) using TCP
« HTTPS: HTTP Secure using TLS (SSL)

* Very simple, with two fundamental concepts
 Resource: Identified with URI

* Methods: Request is stateless
« GET: get resource’s data
« POST: create a new subordinate of resource (e.g. Twitter post)

 PUT: replace the resource’s data (create if doesn't exist)
» DELETE: delete resource

IEEE 802.1, May 2016, Budapest

What is REST? What is RESTful API?

» REST: Architectural style for designing an API
« Stateless: Each method executes on its own (like a browser)

* Client/server, layered: No reliance on intermediaries
 Most of this style is built into HTTP itself

« RESTful API: Use HTTP for an API (instead of website)

« Other protocols are possible (e.g. CoAP), but HTTP assumed
 Data (media type) is typically JSON
 No formal standard, but development tool support is huge

« E.g. PRMD takes a JSON schema and creates a full APl user manual

IEEE 802.1, May 2016, Budapest

https://github.com/interagent/prmd

Benefits of RESTful API (1 of 3)

* Creating a standard is easy

« Many design guides and tools available
Step 1: Create JSON schema
 Such as from YANG

Step 2: Specify rules for URI and HTTP

« ~20 to 40 pages
* Mostly copy & paste from other APIs

That's it... done!

Most RESTful APIs document on the web
 E.g. GitHub, Twitter, Stripe, Facebook, ...

IEEE 802.1, May 2016, Budapest

https://developer.github.com/v3/
https://dev.twitter.com/rest/public
https://stripe.com/docs/api/curl#intro
https://developers.facebook.com/docs/graph-api

Benefits of RESTful API (2 of 3)

* (Creating a client is easy
* (Get started using simple command line (cURL)
* Built into most programming languages
» E.g. Stripe documentation has examples for Go (OMG!)
* Creating a server is easy

« |f your product runs a web server, you are > 90% done
 Many industrial devices already run web servers

 Most software teams are already familiar with HTTP tools

IEEE 802.1, May 2016, Budapest

https://curl.haxx.se/docs/manual.html
https://stripe.com/docs/api/go#pagination

Benefits of RESTful API (3 of 3)

* Longevity
« HTTP is not going away anytime soon

« Security
« Based on TLS (HTTPS), and kept up to date

 Transport

« TCP provides reliable delivery of large data
 Scalable

» Bridges and routers just forward to destination
o Server implicitly supports multiple simultaneous clients

IEEE 802.1, May 2016, Budapest

How can RESTful apply to 802.1Qcc?

Qcc Fully Centralized

« Use as frame of reference

"""""""""""""""" » Centralized D Sttty
User
Configuration

End station (?)
CNC [

4________________________
4________________________

Centralized
Network
Configuration
RAF I Y ¢
Management .= Y
| J
Listeners Bridges Talkers

IEEE 802.1, May 2016, Budapest

RESTCONF for Management

« RESTCONF is a RESTful API for managing YANG data
* Clientis CNC (aka NMS)
 Server is a bridge or router (network infrastructure)

HTTPS GET/PUT used to read/write managed objects
Server supports JSON (typical), XML, or both

Draft in IETF NETCONF working group
« WG state = Submitted to IESG for Publication (as RFC)

YANG modules in work for 802.1Q and 1588
« 802.1AS YANG can be done as augment of 1588 YANG

IEEE 802.1, May 2016, Budapest 1

https://datatracker.ietf.org/doc/draft-ietf-netconf-restconf/?include_text=1

RESTCONF for Management
* (red shows usage of RESTful APIs)

_______________________ »> Centralized 4__________________________-I
I

User

Configuration

End station (?) !
CNC ['

Centralized
Network
Configuration
v 4 b :
. .. -. .. 1
RESTCONF .- A v

| ; J
Listeners Bridges Talkers

IEEE 802.1, May 2016, Budapest

RESTful APl for CNC

« Remember those steps for creating a standard?

« Step 1: Create JSON schema
* 1-1 translation from YANG specified in Qcc UNI (99.2)

« Step 2: Specify rules for URI and HTTP
* E.g. Syntax for Talker, Listener, and StreamStatus in URI

e That's it... done!
« Scalable, so 1000’s of streams

* API can build on top of Qcc’s data model as needed
« E.g. Time-sync UNI proposal

* CNC supports multiple clients (CUCs)

IEEE 802.1, May 2016, Budapest

http://www.ieee802.org/1/files/public/docs2016/cc-cummings-time-sync-uni-0316-v02.pdf

RESTful APl for CUC < CNC
* (red shows usage of RESTful APIs)

PSS Tttt TTTTT T m T T P centralized |[®------------------------y
! User !
Configuration

[End station (?) !

RESTful API
for CNC

Centralized
Network
Configuration

i A S |
v RESTCONF .+ v

- -
- . &
- - L]
- -
- .
p—

Listeners Bridges Talkers

IEEE 802.1, May 2016, Budapest

What is the CUC?

* |n most time-sensitive applications a
human uses a software entity (tool) to:
 Discover: End stations w/ resources & capabilities
 Design: What goes where in the distributed application
 Program: Write/debug software components for application
 Connect flows: Input to output, Code to I/O, code to code, ...
 Control: Start/stop state machines

 Plugé&play (i.e. no human) is a 100% software problem

« What do these tasks have in common?

« Largely unrelated to the network
* Requirements for code and I/O are more complex than network

IEEE 802.1, May 2016, Budapest 15

CUC is the Application (User) Tool

« |f/when flows occur over network, TSN is relevant

« From CNC's perspective, CUC makes most decisions
« CUC knows talker/listeners, MaxLatency requirements, etc
« Talker/listener end stations can be ‘dumb’

 Today’s CUCs have their own protocols to end stations

* Qcc is generally not relevant to those protocols
« Exception: TrafficSpec, InterfaceCapabilities/Configuration

» Two approaches to integrating TSN into CUC protocol
1. Create CUC protocol v2 to intimately integrate TSN
2. Leave CUC protocol as-is; Configure TSN separately

IEEE 802.1, May 2016, Budapest

RESTful API for TSN in End Station

« RESTful is great for option 2: Configure TSN separately
« RESTful APlis not a new CUC protocol
 Opposite goal: Add TSN with no change to CUC protocol

* Clientis the CUC
« Server is talker/listener end station

 Goalis to setup TSN for streams that CUC is connecting

« MaxLatency and other TSN requirements decided by CUC
* Typically driven by physical input to output time

IEEE 802.1, May 2016, Budapest 17

RESTful APls as Complete TSN Solution
* (red shows usage of RESTful APIs)

[~ T T TT TS T T T T T s e e P centralized | €T oo ommmmmmmmmmmmy
! User !

Configuration

RESTful AP !
RESTful API for TSNin
for CNC end station
Centralized
Network
Configuration
: v d > v :
H RESTCONF " /% ™ v
| J
Listeners Bridges Talkers

IEEE 802.1, May 2016, Budapest

What is CoAP?

CoAP

* ‘I have a constrained product that cannot run HTTPS.
What do | do?”

* Where “constrained” means small CPU / memory / power

 |[ETF CoRE working group: Constrained RESTful
» CoAP (REC 7252): binary HTTP equivalent

« CBOR (RFC 7049): compact binary JSON equivalent
* Including YANG mapping (draft)

« CoMI (draft): compact RESTCONF equivalent

* Used today for low power wireless (e.g. 6TISCH)
 Mapping for IPv6 UDP DTLS; Open source available

o (Clear option for TSN

IEEE 802.1, May 2016, Budapest

https://datatracker.ietf.org/wg/core/charter/
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7049
https://datatracker.ietf.org/doc/draft-ietf-core-yang-cbor/?include_text=1
https://datatracker.ietf.org/doc/draft-vanderstok-core-comi/
https://datatracker.ietf.org/wg/6tisch/charter/

Thank you

IEEE 802.1, May 2016, Budapest

