
IEEE 802.1, May 2016, Budapest

RESTful APIs and 802.1Qcc

Rodney Cummings

National Instruments

IEEE 802.1, May 2016, Budapest 2

Agenda

• What is a RESTful API?

• How can RESTful apply to 802.1Qcc?

• What is CoAP?

IEEE 802.1, May 2016, Budapest 3

Premise of this Presentation

• Configuration of TSN requires protocol(s)

• Past TSN work has focused on invention

• Create a new protocol from scratch

• Publish in 802.1 or elsewhere, but that’s just the 1st step

• Momentum requires open source, tools, OS integration, etc

• Challenging to find companies who are willing to invest

• MRP and IS-IS struggle to this day

• What if we could find an existing protocol?
• millions of active users… huge software development community…

plenty of open source… ships with every operating system…

• Maybe The Internet can help

IEEE 802.1, May 2016, Budapest 4

What is HTTP?

• Foundational protocol of The Internet (web)

• Request/response (client/server) using TCP

• HTTPS: HTTP Secure using TLS (SSL)

• Very simple, with two fundamental concepts

• Resource: Identified with URI

• Methods: Request is stateless

• GET: get resource’s data

• POST: create a new subordinate of resource (e.g. Twitter post)

• PUT: replace the resource’s data (create if doesn’t exist)

• DELETE: delete resource

IEEE 802.1, May 2016, Budapest 5

What is REST? What is RESTful API?

• REST: Architectural style for designing an API

• Stateless: Each method executes on its own (like a browser)

• Client/server, layered: No reliance on intermediaries

• Most of this style is built into HTTP itself

• RESTful API: Use HTTP for an API (instead of website)

• Other protocols are possible (e.g. CoAP), but HTTP assumed

• Data (media type) is typically JSON

• No formal standard, but development tool support is huge

• E.g. PRMD takes a JSON schema and creates a full API user manual

https://github.com/interagent/prmd

IEEE 802.1, May 2016, Budapest 6

Benefits of RESTful API (1 of 3)

• Creating a standard is easy

• Many design guides and tools available

• Step 1: Create JSON schema

• Such as from YANG

• Step 2: Specify rules for URI and HTTP

• ~20 to 40 pages

• Mostly copy & paste from other APIs

• That’s it… done!

• Most RESTful APIs document on the web

• E.g. GitHub, Twitter, Stripe, Facebook, …

https://developer.github.com/v3/
https://dev.twitter.com/rest/public
https://stripe.com/docs/api/curl#intro
https://developers.facebook.com/docs/graph-api

IEEE 802.1, May 2016, Budapest 7

Benefits of RESTful API (2 of 3)

• Creating a client is easy

• Get started using simple command line (cURL)

• Built into most programming languages

• E.g. Stripe documentation has examples for Go (OMG!)

• Creating a server is easy

• If your product runs a web server, you are > 90% done

• Many industrial devices already run web servers

• Most software teams are already familiar with HTTP tools

https://curl.haxx.se/docs/manual.html
https://stripe.com/docs/api/go#pagination

IEEE 802.1, May 2016, Budapest 8

Benefits of RESTful API (3 of 3)

• Longevity

• HTTP is not going away anytime soon

• Security

• Based on TLS (HTTPS), and kept up to date

• Transport

• TCP provides reliable delivery of large data

• Scalable

• Bridges and routers just forward to destination

• Server implicitly supports multiple simultaneous clients

IEEE 802.1, May 2016, Budapest

How can RESTful apply to 802.1Qcc?

IEEE 802.1, May 2016, Budapest 10

Qcc Fully Centralized

• Use as frame of reference

Management

CNC

End station (?)

IEEE 802.1, May 2016, Budapest 11

RESTCONF for Management

• RESTCONF is a RESTful API for managing YANG data

• Client is CNC (aka NMS)

• Server is a bridge or router (network infrastructure)

• HTTPS GET/PUT used to read/write managed objects

• Server supports JSON (typical), XML, or both

• Draft in IETF NETCONF working group

• WG state = Submitted to IESG for Publication (as RFC)

• YANG modules in work for 802.1Q and 1588

• 802.1AS YANG can be done as augment of 1588 YANG

https://datatracker.ietf.org/doc/draft-ietf-netconf-restconf/?include_text=1

IEEE 802.1, May 2016, Budapest 12

RESTCONF for Management

CNC

End station (?)

• (red shows usage of RESTful APIs)

RESTCONF

IEEE 802.1, May 2016, Budapest 13

RESTful API for CNC

• Remember those steps for creating a standard?

• Step 1: Create JSON schema

• 1-1 translation from YANG specified in Qcc UNI (99.2)

• Step 2: Specify rules for URI and HTTP

• E.g. Syntax for Talker, Listener, and StreamStatus in URI

• That’s it… done!

• Scalable, so 1000’s of streams

• API can build on top of Qcc’s data model as needed

• E.g. Time-sync UNI proposal

• CNC supports multiple clients (CUCs)

http://www.ieee802.org/1/files/public/docs2016/cc-cummings-time-sync-uni-0316-v02.pdf

IEEE 802.1, May 2016, Budapest 14

RESTful API for CUC ↔ CNC

End station (?)

• (red shows usage of RESTful APIs)

RESTCONF

RESTful API

for CNC

IEEE 802.1, May 2016, Budapest 15

What is the CUC?
• In most time-sensitive applications a

human uses a software entity (tool) to:

• Discover: End stations w/ resources & capabilities

• Design: What goes where in the distributed application

• Program: Write/debug software components for application

• Connect flows: Input to output, Code to I/O, code to code, …

• Control: Start/stop state machines

• Plug&play (i.e. no human) is a 100% software problem

• What do these tasks have in common?

• Largely unrelated to the network

• Requirements for code and I/O are more complex than network

IEEE 802.1, May 2016, Budapest 16

CUC is the Application (User) Tool

• If/when flows occur over network, TSN is relevant

• From CNC’s perspective, CUC makes most decisions

• CUC knows talker/listeners, MaxLatency requirements, etc

• Talker/listener end stations can be ‘dumb’

• Today’s CUCs have their own protocols to end stations

• Qcc is generally not relevant to those protocols

• Exception: TrafficSpec, InterfaceCapabilities/Configuration

• Two approaches to integrating TSN into CUC protocol

1. Create CUC protocol v2 to intimately integrate TSN

2. Leave CUC protocol as-is; Configure TSN separately

IEEE 802.1, May 2016, Budapest 17

RESTful API for TSN in End Station

• RESTful is great for option 2: Configure TSN separately

• RESTful API is not a new CUC protocol

• Opposite goal: Add TSN with no change to CUC protocol

• Client is the CUC

• Server is talker/listener end station

• Goal is to setup TSN for streams that CUC is connecting

• MaxLatency and other TSN requirements decided by CUC

• Typically driven by physical input to output time

IEEE 802.1, May 2016, Budapest 18

RESTful APIs as Complete TSN Solution

• (red shows usage of RESTful APIs)

RESTCONF

RESTful API

for CNC

RESTful API

for TSN in

end station

IEEE 802.1, May 2016, Budapest

What is CoAP?

IEEE 802.1, May 2016, Budapest 20

CoAP
• “I have a constrained product that cannot run HTTPS.

What do I do?”

• Where “constrained” means small CPU / memory / power

• IETF CoRE working group: Constrained RESTful

• CoAP (RFC 7252): binary HTTP equivalent

• CBOR (RFC 7049): compact binary JSON equivalent

• Including YANG mapping (draft)

• CoMI (draft): compact RESTCONF equivalent

• Used today for low power wireless (e.g. 6TiSCH)

• Mapping for IPv6 UDP DTLS; Open source available

• Clear option for TSN

https://datatracker.ietf.org/wg/core/charter/
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7049
https://datatracker.ietf.org/doc/draft-ietf-core-yang-cbor/?include_text=1
https://datatracker.ietf.org/doc/draft-vanderstok-core-comi/
https://datatracker.ietf.org/wg/6tisch/charter/

IEEE 802.1, May 2016, Budapest

Thank you

