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Agenda

• What is a RESTful API?

• How can RESTful apply to 802.1Qcc?

• What is CoAP?
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Premise of this Presentation

• Configuration of TSN requires protocol(s)

• Past TSN work has focused on invention

• Create a new protocol from scratch

• Publish in 802.1 or elsewhere, but that’s just the 1st step

• Momentum requires open source, tools, OS integration, etc

• Challenging to find companies who are willing to invest

• MRP and IS-IS struggle to this day

• What if we could find an existing protocol?
• millions of active users… huge software development community… 

plenty of open source… ships with every operating system…

• Maybe The Internet can help
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What is HTTP?

• Foundational protocol of The Internet (web)

• Request/response (client/server) using TCP

• HTTPS: HTTP Secure using TLS (SSL)

• Very simple, with two fundamental concepts

• Resource: Identified with URI

• Methods: Request is stateless

• GET: get resource’s data

• POST: create a new subordinate of resource (e.g. Twitter post)

• PUT: replace the resource’s data (create if doesn’t exist)

• DELETE: delete resource
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What is REST? What is RESTful API?

• REST: Architectural style for designing an API

• Stateless: Each method executes on its own (like a browser)

• Client/server, layered: No reliance on intermediaries

• Most of this style is built into HTTP itself

• RESTful API: Use HTTP for an API (instead of website)

• Other protocols are possible (e.g. CoAP), but HTTP assumed

• Data (media type) is typically JSON

• No formal standard, but development tool support is huge

• E.g. PRMD takes a JSON schema and creates a full API user manual

https://github.com/interagent/prmd
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Benefits of RESTful API (1 of 3)

• Creating a standard is easy

• Many design guides and tools available

• Step 1: Create JSON schema

• Such as from YANG

• Step 2: Specify rules for URI and HTTP

• ~20 to 40 pages

• Mostly copy & paste from other APIs

• That’s it… done!

• Most RESTful APIs document on the web

• E.g. GitHub, Twitter, Stripe, Facebook, …

https://developer.github.com/v3/
https://dev.twitter.com/rest/public
https://stripe.com/docs/api/curl#intro
https://developers.facebook.com/docs/graph-api
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Benefits of RESTful API (2 of 3)

• Creating a client is easy

• Get started using simple command line (cURL)

• Built into most programming languages

• E.g. Stripe documentation has examples for Go (OMG!)

• Creating a server is easy

• If your product runs a web server, you are > 90% done

• Many industrial devices already run web servers

• Most software teams are already familiar with HTTP tools

https://curl.haxx.se/docs/manual.html
https://stripe.com/docs/api/go#pagination
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Benefits of RESTful API (3 of 3)

• Longevity

• HTTP is not going away anytime soon

• Security

• Based on TLS (HTTPS), and kept up to date

• Transport

• TCP provides reliable delivery of large data

• Scalable

• Bridges and routers just forward to destination

• Server implicitly supports multiple simultaneous clients
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How can RESTful apply to 802.1Qcc?
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Qcc Fully Centralized

• Use as frame of reference

Management

CNC

End station (?)
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RESTCONF for Management

• RESTCONF is a RESTful API for managing YANG data

• Client is CNC (aka NMS)

• Server is a bridge or router (network infrastructure)

• HTTPS GET/PUT used to read/write managed objects

• Server supports JSON (typical), XML, or both

• Draft in IETF NETCONF working group

• WG state = Submitted to IESG for Publication (as RFC)

• YANG modules in work for 802.1Q and 1588

• 802.1AS YANG can be done as augment of 1588 YANG

https://datatracker.ietf.org/doc/draft-ietf-netconf-restconf/?include_text=1
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RESTCONF for Management

CNC

End station (?)

• (red shows usage of RESTful APIs)

RESTCONF
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RESTful API for CNC

• Remember those steps for creating a standard?

• Step 1: Create JSON schema 

• 1-1 translation from YANG specified in Qcc UNI (99.2)

• Step 2: Specify rules for URI and HTTP

• E.g. Syntax for Talker, Listener, and StreamStatus in URI

• That’s it… done!

• Scalable, so 1000’s of streams

• API can build on top of Qcc’s data model as needed

• E.g. Time-sync UNI proposal

• CNC supports multiple clients (CUCs)

http://www.ieee802.org/1/files/public/docs2016/cc-cummings-time-sync-uni-0316-v02.pdf
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RESTful API for CUC ↔ CNC

End station (?)

• (red shows usage of RESTful APIs)

RESTCONF

RESTful API

for CNC
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What is the CUC?
• In most time-sensitive applications a 

human uses a software entity (tool) to:

• Discover: End stations w/ resources & capabilities 

• Design: What goes where in the distributed application

• Program: Write/debug software components for application

• Connect flows: Input to output, Code to I/O, code to code, …

• Control: Start/stop state machines

• Plug&play (i.e. no human) is a 100% software problem

• What do these tasks have in common?

• Largely unrelated to the network

• Requirements for code and I/O are more complex than network
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CUC is the Application (User) Tool

• If/when flows occur over network, TSN is relevant

• From CNC’s perspective, CUC makes most decisions

• CUC knows talker/listeners, MaxLatency requirements, etc

• Talker/listener end stations can be ‘dumb’

• Today’s CUCs have their own protocols to end stations

• Qcc is generally not relevant to those protocols

• Exception: TrafficSpec, InterfaceCapabilities/Configuration

• Two approaches to integrating TSN into CUC protocol

1. Create CUC protocol v2 to intimately integrate TSN

2. Leave CUC protocol as-is; Configure TSN separately
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RESTful API for TSN in End Station

• RESTful is great for option 2: Configure TSN separately

• RESTful API is not a new CUC protocol

• Opposite goal: Add TSN with no change to CUC protocol

• Client is the CUC

• Server is talker/listener end station

• Goal is to setup TSN for streams that CUC is connecting

• MaxLatency and other TSN requirements decided by CUC

• Typically driven by physical input to output time
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RESTful APIs as Complete TSN Solution

• (red shows usage of RESTful APIs)

RESTCONF

RESTful API

for CNC

RESTful API

for TSN in

end station
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What is CoAP?
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CoAP
• “I have a constrained product that cannot run HTTPS.

What do I do?”

• Where “constrained” means small CPU / memory / power

• IETF CoRE working group: Constrained RESTful

• CoAP (RFC 7252): binary HTTP equivalent

• CBOR (RFC 7049): compact binary JSON equivalent

• Including YANG mapping (draft)

• CoMI (draft): compact RESTCONF equivalent

• Used today for low power wireless (e.g. 6TiSCH)

• Mapping for IPv6 UDP DTLS; Open source available

• Clear option for TSN

https://datatracker.ietf.org/wg/core/charter/
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7049
https://datatracker.ietf.org/doc/draft-ietf-core-yang-cbor/?include_text=1
https://datatracker.ietf.org/doc/draft-vanderstok-core-comi/
https://datatracker.ietf.org/wg/6tisch/charter/
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Thank you


