Update on 802.1 Maintenance Request 193

Rodney Cummings
National Instruments

802.1 Maintenance Request 193

- Request to clarify on-the-wire behavior for .1Qbv
 - http://www.ieee802.org/1/files/public/maint/new-requests/314/requests/171/pre.html
 - "Proposed text" is incomplete in database (as of Sep 5 2017)
- Discussed briefly in 802.1 meeting in July (Berlin)
 - Agreed to submit a sponsor ballot comment to .1Q-rev rollup
- Discussed in TSN conference call August 14 2017
 - Agreed to update "Proposed text"
 - Agreed that "shall" is appropriate
- In these slides
 - Updated "Proposed text"
 - Related questions

Updated "Proposed text"

Updated "Proposed text" (1 of 4)

Changes to original request shown in red.

Add a new subclause 12.29.2, titled "Representation of times", with the following text:

"The time values of 12.29.1 (e.g. AdminBaseTime) shall be represented at the point where a frame passes the reference plane marking the boundary between the network media and PHY (i.e. on-the-wire time point). The start of the frame shall be the message timestamp point as specified by IEEE Std 802.1AS for various media.

Updated "Proposed text" (2 of 4)

Figure 12-6 shows two points in time for scheduled traffic. The time of gate open/close described in subclause 8.6.8.4 is used for transmission selection, and that point in time exists internal to the Bridge (i.e. above MAC and PHY). A delay exists between this internal time point and the time of transmit on-the-wire. For example, if transition of a gate from closed to open immediately results in selection of a frame for transmission, there will be a delay from that internal time of transmission selection to the start of the frame on-the-wire. The internal time point will have variance (min/max), and the delay to the on-the-wire time point will also have variance.

Updated "Proposed text" (3 of 4)

Since the Bridge contains the information needed in order to compute the min/max delay from the internal time point to the on-the-wire time point, the Bridge is responsible for performing the adjustments in order to represent the managed objects as on-the-wire time.

NOTE 1: As an example, consider an IEEE Std 802.3 Port configured to transmit a single traffic class with known frame lengths, and the managed objects are configured with a cycle of open for one millisecond, then closed for one millisecond. If a continuous burst of frames is transmitted through the Bridge to the Port, no symbol of a frame can transmit from the PHY during the closed window (i.e. from start of Preable through end of Frame Check Sequence).

NOTE 2: Although managed objects apply to a Bridge, the preceding specification of on-the-wire time can be applied to an end station."

Updated "Proposed text" (4 of 4)

Insert a new Figure 12-6, titled "Points in time for scheduled traffic":

```
Transmission selection for
   scheduled traffic (8.6.8.4) | <- internal time point
-----+
      Subclause 6.9
-----+
      Subclause 8.5.1
          MAC
          PHY
                              <- on-the-wire time point
```

Related questions

Clarify .1Qbu (frame preemption)?

- .1Qbu is included in the .1Q-rev rollup
- In 12.30, the only writable managed object for .1Qbu is framePreemptionStatusTable
 - Array of 8 boolean per Port, to enable for each priority
 - There are no times
- The above-the-MAC specs for frame preemption relate to the ordering of frames and fragments
 - This ordering remains consistent on-the-wire
- Clarification doesn't seem to be needed

Clarify .1Qci (filtering & policing)?

- .1Qci is not included in the .1Q-rev rollup
- 12.31.3 (Stream Gate Instance Table) is analogous to managed objects of .1Qbv
 - Includes times
 - Requires clarification
- If the working group views this clarification as within the scope of YANG, it can be done in P802.1Qcw
 - Otherwise, the working group can defer to a future .1Q-rev rollup that includes .1Qci