Congestion Management – Congestion Isolation

Paul Congdon

Yolanda Yu

Kevin Shen

paul.congdon@tallac.com

yolanda.yu@huawei.com

kevin.shenli@huawei.com

IEEE 802.1 DCB

St John's Newfoundland

September 2017

Agenda

- Low-Latency, Lossless, Large-Scale DCNs
- Challenges going forward
- Solution Goals
- Congestion Isolation Details
- Simulation Analysis
- Next Steps

The Case for Low-latency, Lossless, Large-Scale DCNs

- More and more latency-sensitive applications are being deployed in data centers
 - Distributed Storage
 - AI / Deep Learning
 - Cloud HPC
 - High-Frequency Trading
- RDMA is operating at larger scales thanks to RoCEv2
 - Chuanxiong Guo, et. al., Microsoft, "RDMA over Commodity Ethernet at Scale", SIGCOMM 2016
 - □ Y Zhu, H Eran, et. al., Microsoft, Mellanox, "Congestion control for large-scale RDMA deployments", SIGCOMM 2015
 - Radhika Mittal, et. al., UC Berkeley, Google, "TIMELY: RTT-based Congestion Control for the Datacenter", SIGCOMM 2015
- The scale of Data Center Networks continues to grow
 - Larger, faster clusters are better than more smaller size clusters
 - Server growth continues at 25% 30% putting pressure on cluster sizes and networking costs

Lossless DCN state-of-the-art

- DCN is primarily an L3 network
- ECN used for end-to-end congestion control
- Congestion feedback can be protocol and application specific
- PFC used as a last resort to ensure lossless environment, or not at all in low-loss environments.
- Traffic classes for PFC are mapped using DSCP as opposed to VLAN tags

Scaling larger makes lossless more difficult

Victim Flow

ECN Control Loop

- Increased number of congestion points
- More data in-flight
- Increased RTT and delay for congestion feedback
- Increased switch buffer requirements
- Increased use of PFC
- Increased number of victim flows due to HoLB

Switch buffer growth is not keeping up

KB of Packet Buffer by Commodity Switch Architecture

Commodity Shallow Buffer Switches in DCNs are desirable:

- Low Latency
- Low Cost

However, packet loss can create performance issues:

 Source: Broadcom, "White Paper: Buffer Requirements for Datacenter Network Switches", DNFAMILY-WP1101, August 25, 2015

Source: "Congestion Control for High-speed Extremely Shallow-buffered Datacenter Networks". In Proceedings of APNet'17, Hong Kong, China, August 03-04, 2017, https://doi.org/10.1145/3106989.3107003

Concerns about over-using PFC

- HoL blocking
- Congestion spreading
- Buffer Bloat, increasing latency
- Increased jitter reducing throughput
- Deadlocks

Goals

- Support larger, faster data centers (Low-Latency, High-Throughput)
- Support lossless transfers
- Improve performance of TCP and UDP based flows
- Reduce pressure on switch buffer growth
- Reduce the frequency of relying on PFC for a lossless environment
- Eliminate or significantly reduce HOLB caused by over-use of PFC

Isolate the congestion to mitigate HOLB

Congestion Isolation

Definition: An approach to isolate flows causing congestion and signal upstream to isolate the same flows to avoid head-of-line blocking.

The approach involves:

- Identifying the flows creating congestion (e.g. perhaps already done for QCN and/or ECN)
- 2. Using implementation specific approaches to dynamically adjust the traffic class of offending flows without packet re-ordering (e.g. DVL Dynamic Virtual Lanes)
- 3. Signaling upstream indications via a Congestion Isolation Packet (CIP)

Non-Congested Flow Queue: Normal priority queues. Higher scheduling priority than Congested Flow Queue. **Congested Flow Queue:** At least one of 8 priority queues. Lower scheduling priority than Non-Congested Flow Queue. Scheduling assures no out-of-order packets with Non-Congested Flow Queue. There can be multiple congested flow queues (use 5-tuple hash to map one).

Congested Flow

Non-Congested Flow

Congested Flow

Non-Congested Flow

Congestion Isolation Packet

- Objectives/Requirements:
 - Provide upstream neighbor with an indication that a flow has been isolate
 - Provide upstream neighbor with flow identification information
 - No adverse effects of single packet loss
 - Low overhead

Handling the potential out-of-order problem

Simulation Set-up

- 2 Tier CLOS: 100G interface with 200ns of link latency 200ns(about 40m)
- Scale: 128 ~ 1152 servers, 24 ~ 72 switches
- Traffic Patterns:
 - Several regional all to all with some persistent incast
 - Flow size distribution is from 5 different real data center applications:
 - Enterprise IT, WebServer, Hadoop, Data Mining, Cache-Follower
- Compared Solutions:
 - PFC+ECN with CI: Congestion Isolation is implemented along with PFC+ECN
 - PFC+ECN without CI: Just PFC+ECN
 - All solutions include small flow prioritization mechanism

PFC+ECN with CI VS. PFC+ECN without CI

- CI reduces the count of PAUSE
 Frames sent to NICs of servers, so it can alleviate the HOL Blocking of the NIC, which can improve the performance of mice flows.
- In the PFC+ECN without CI, we also prioritize the mice.

Why PFC+ECN with CI outperforms PFC+ECN without CI

- CI reduces the pause frame count by 53%.
- CI reduces the CNP count by 57%.
- The count of new control message generated by CI is much less than the count it reduces the count of Pause frames.
- It has the same order-ofmagnitude with large flow count.

Why PFC+ECN with CI outperforms PFC+ECN without CI

Pause Frame Count Generated by Different Queues(Norm. to Congested Flow Queue)

• 96.6% of the pause frames are generated by congested flow queues

Different flow count(Norm. to All Flow)

- The count of isolated flows is quite small. In our simulation with 22188 flows and 1152 server nodes.
 The proportion is 2% for total flows, and 12% for large flows.
- So the HOLB only occurs among the congested flows

Comparison for different scale

Comparison for different workload – Flow Completion Times

Summary

- Current data center design will be challenged to support the needs of large scale, low-latency, lossless networks.
- Congestion Isolation provides the following benefits:
 - Supports lossless as well as low-latency
 - Mitigates Head-of-Line blocking caused by PFC
 - Improves average flow completion times
 - Reduces or eliminates the need for PFC on non-congested flow queues
- Next Steps
 - Call for interest in creating a project
 - Respond to comments and feedback

Thank you

www.huawei.com