
Reconciling requirements for
the Resource Allocation Protocol (RAP),

the Link-local Registration Protocol (LRP),
the Multiple Resource Registration Protocol (MSRP),

and Enhancements to MSRP (IEEE Std 802.1Qcc),
the Centralized User Configuration (CUC),

and the Centralized Network Configuration (CNC)

Norman Finn
Huawei Technologies Co. Ltd
dd-finn-RAP-LRP-MSRP-Qcc-0918-v02

Preface
We had some contention in Oslo over what is needed from RAP/LRP

and from a CNC. This led to arguments of the form:

! You’re trying to expand the scope of RAP/LRP unreasonably!

! You’re trying to cripple the CNC!

I believe that these differences are not due to bad intentions, but to

different assumptions made by the contending parties. There has

also been some confusion about requirements, for which this author

bears some responsibility.

Preface
The following presentation is an attempt to reconcile our differing
assumptions, so that we can proceed with a clear plan for RAP and at
least one other project. Outline:
! Evolution from MSRP to RAP/LRP
!How many controllers are there?
!How many UNIs are there?
! Summary

Evolution from MSRP to RAP/LRP
How many controllers are there?
How many UNIs are there?
Summary

Step 1: MSRP

!MSRP information follows the data path.
! Every MSRP attribute is tied to one particular target link.

MSRP MSRP

end system relay system

Step 2: MSRP + .1Qcc

!MSRP STILL information follows the data path.
! Every MSRP attribute is STILL tied to one particular target link.

MSRP MSRP

CUC CNC

Brains moved
to controller

Remote control
of databases

end system relay system

Step 3: RAP + LRP Native

! RAP information STILL follows the data path.
! Every RAP attribute is STILL tied to one particular target link.

RAP /
LRP

RAP /
LRP

end system relay system

In case this example
worries you, see
“Another use case”,
below

Step 4: RAP + LRP + Proxy/Slave

! RAP information no longer follows the data path.
! But, every RAP attribute is STILL tied to one particular target link.

RAP + LRP + TCP

CUC CNC

RAP + LRP + TCP

Brains moved
to controller

Databases moved
to controllers

Databases moved
to controllers

end system relay system

Constants from MSRP to Proxy RAP/LRP
Every attribute is in an applicant and/or registrar database.
Each database is locked to a target port.
MSRP locking: MSRP passes through the target ports.
RAP/LRP locking: LLDP chassis/port ID and My Portal Number are in
the Hello LRPDU, then My Portal Number is in every LRPDU.

Evolution from MSRP to RAP/LRP
How many controllers are there?
How many UNIs are there?
Summary

Talker requests vs. Third-party requests
Talker request: I am “A”. I want to send to destination address “B”.
! By definition, a Talker request is from a TSN participant.
! It can come from a CUC, but from the CUC-as-Talker-Proxy.
!A Talker request is tied to a target port. It is the first hop of a

(potentially) peer-to-peer protocol.
Third-party request: Source “A” wants to send to destination “B”.
!A Third-party request is, by definition, from a CUC.
! It may control only a small part of the network, but it is a CUC.
!A third-party request is not tied to a target port.

MSRP and third-party requests
Imagine giving peer-to-peer MSRP a third-party request.
!MSRP does not accept requests except from AVB/TSN-capable

devices. A CUC need note be an AVB/TSN-capable device.
!How would a bridge receiving the request know where to find the

Talker, the first target port, and the edge bridge serving that
Talker? (I’m not saying it’s impossible – but it’s far beyond the
scope of the current MSRP.)

!When the reservation is complete, how would the approval get to
the original requester?

!Would the CUC have to have L2 connectivity? Why?

Not caring
Two of the goals of LRP/RAP:
! The Talker does not know or care whether it is making a request to

a Bridge or a CNC/Proxy.
! The Bridge does not know or care whether it is receiving a request

from a Talker or a CUC/Proxy.
But, this only works for Talker requests, not third-party requests.
CUCs make third-party requests. A CUC knows it’s a CUC. A non-
CNC Bridge can’t handle a third-party request. A system that can
handle a third-party request knows it is a full-service CNC.

Two kinds of CNC, two kinds of CUC
A CNC can be a Proxy Bridge, and handle only Talker requests
A CNC can be a full-service CNC, and handle third-party requests
A CUC can be a Proxy Talker, and make only Talker requests.
A CUC can be a full-service CUC, and make third-party requests.
If one issues third-party requests, then one is a full-service CUC,
and one knows it is talking to a full-service CNC.

Evolution from MSRP to RAP/LRP
How many controllers are there?
How many UNIs are there?
Summary

How many kinds of UNIs?
From the above arguments, there are clearly two UNIs:
!A Talker UNI is used for Talker requests.
!At one end of the Talker UNI is a Native Talker or a Proxy Talker CUC.
!At the other end of the Talker UNI is a Native Bridge or a Proxy Bridge CNC.
!No request is defined for the Talker UNI that cannot be handled by a peer-

to-peer implementation using the ruled defined in MSRP/RAP/LRP. (If this
were not true, then the requestor does care what it’s talking to.)

!A Third-party UNI is used for Third-party requests.
!At one end of the Third-party UNI is a full-service CUC.
!At the other end of the Third-party UNI is a full-service CNC.
!Any request we can think of in the future could be defined for third Third-

party UNI.

Evolution from MSRP to RAP/LRP
How many controllers are there?
How many UNIs are there?
Summary

Two kinds of CNC, two kinds of CUC

A CUC or CNC can implement one UNI + function or both.
The fact that most of the information elements (TLVs) are common
between the two UNIs confused most of us (certainly me) into
thinking that we were talking about only one UNI.

Third-party functions

Talker Proxy functions

Third-party functions

Bridge Proxy functionsCUC CNC
Third-party UNI

Talker UNI

Summary
!We limit RAP/LRP capabilities to things that can be done with a

peer-to-peer implementation.
!We start a new project for the Full-Service CNC + Third-party UNI.

With the suggested distinction between Proxy and Full-service CUC
and CNC, the implementors, operators, and system designers all
have a common set of expectations about cost vs. capability.

Thank you

Example 1: Non-centralized

Eight Talkers. Six Bridges.

Running MSRP or RAP/LDP peer-to-peer.

Listeners not shown.

T1

T2

T3

T4
T5

T6 T7

T8

B1

B2
B3

B4 B5
B6 B7

B8

Tn

Bn

Applicant + Registrar database
living in a Talker

Applicant + Registrar database
living in a Bridge

Bn Bp

Bb

Ba

Bc

Be

Bd

Bj
Bk

Bl

Bs

Br
Bq

Bh

Bf
Bg

Key:

Example 2: CUC/CNC
CNC emulates peer-to-peer

CUC controls Talkers, CNC controls Bridges.
CUC/CNC communications use Talker UNI over a single TCP connection. It’s the Talker UNI
because it connects pairs of applicant/registrar databases.
CNC emulates peer-to-peer MSRP/RAP/LRP because it’s easy, but this is not visible outside the
box.

T1

T2

T3

T4
T5

T6

T7

T8

B1

B2
B3

B4 B5

B6 B7

B8

Bn Bp

Bb

Ba
Bc

Be

Bd

Bj
Bk

Bl

Bs

BrBq

Bh

Bf
Bg

CUC CNC

Example 3: CUC/CNC
CNC operates some other way

CUC controls Talkers, CNC controls Bridges.
CUC/CNC communications use Talker UNI over a single TCP connection. It’s the
Talker UNI because it connects pairs of applicant/registrar databases.
CNC operates by magic, but this is not visible outside the box.

T1

T2

T3

T4
T5

T6

T7

T8

B1

B2
B3

B4 B5

B6 B7

B8CUC CNC

Differences and similarities between
examples 1 through 3
In all three examples, each Talker/Bridge link has an associated pair
of Portals that implement applicant/registrar databases. Whether
the Portals reside in a Talker, a Bridge, a CUC, or a CNC, they operate
in exactly the same way. That’s what the Talker UNI is.
There is no way for an observer outside the CNC to tell the difference
between examples 2 and 3.
In example 3, RAP/LRP are not operating peer-to-peer through the
network

Example 4: CUC/CNC use Third-party UNI

We can do anything we want for the Third-party UNI.
It is not tied to applicant/registrar databases that are, in turn, tied to
specific physical links.

CUC CNC

Third-party UNI
The attributes crossing the Third-party UNI are very similar to those
on the Talker UNI, so we should use the same TLVs, mostly or entirely
those in 802.1Qcc.

We may find the applicant/registrar database idea useful for the
Third-party UNI. But, we would probably have one Portal in the CUC
for each CNC it connects to, and vice-versa, rather than one Portal
per data path link, as in the Talker UNI.

