Paternoster policing and scheduling

Paternoster policing and scheduling

Mick Seaman

Paternoster is a simple real-time packet bandwidth reservation, policing, queuing, and
transmission scheduling algorithm that provides bounded end-to-end delays without
requiring clock synchronization between network nodes!. This updated note includes
revised delay bounds (previously overstated) and describes its use with shared media and

aggregate flows.

1. Introduction

The paternoster real-time forwarding algorithm
provides bounded delays across the network and
lossless service for flows that conform to their
reservations. The basic algorithm uses four output
queues per class of service per port, and one active
counter for each flow (for pseudo-code see Annex A).
Best effort traffic can make use of any remaining
bandwidth (either unreserved or not currently used),
with a relaxed upper delay bound (before discard).

Relationship to other algorithms

The algorithm can also be described as an
improvement on the peristaltic shaper (CQF), with the
node to node synchronization requirement removed;
as deadline oriented, with not before/not after
attributes for forwarded packets; or indeed as an
improved credit based shaper.

Epochs and reservations

The ports that transmit and receive frames between the
nodes in any particular network are all configured to
use a basic epoch duration? t, though no attempt is
made to synchronize epochs for different ports. A
reservation p,> for flow i allows the source port, s;, of
that flow to transmit frames containing up to p; octets
in each successive epoch?, without constraining when
in each epoch frames are transmitted.

Queues, reception and transmission

Each port has four queues, each identified as the prior,
current, next, or last queue for a given epoch. The
port transmits frames from the prior queue (while any
remain enqueued) and then from the current queue.

Frames received for flow 7 in an epoch that are to be
transmitted through the port are added to the current
gueue, as long as those cumulative additions do not
exceed p;. They are then added to the nexs queue, and

finally to the /ast queue (with the same p, limits). Any
further frames received in the epoch are discarded.

When a new epoch begins, the current queue becomes
the prior queue, the next and last queues (and the
remainder of their initial p; reservations) become
current, and next respectively. The former prior queue
should be empty (if not, there has been a reservation or
transmission error, and the queue is purged), is given a
fresh reservation, and becomes the new last queue.

Best case forwarding

Figure 1 shows Alice transmitting frames (1, 2, 3, ...)
for a given flow at regular intervals, in each of her
epochs (delineated by |). Each frame experiences a
constant delay en route to Bob and is added to the
current queue (c in the figure) for each of his epochs
before being transmitted from that queue to Charlie,
again with constant delay.

| | | | | |
NN N N A
O A A R AP B
1 2 3 4 5
Charlie | X X X L ¢

Alice

Bob

Figure 1—Best case forwarding (constant delays)

Figure 2 shows the same information with the
timescales shifted by the constant transit delay
between each pair of participants.

Alice | | | | | |
T A
Bob | ¢ | co | S | ¢ | Co |
{4 4 4
Charlie K | € | € | ¢ |

Figure 2—Best case, constant delay, time shifted

1The paternoster algorithm originated in a network delay analysis and a request from John Messenger at the January 2017 interim for a protocol description
that met specific criteria, though we did not discuss this algorithm. Paternosters are described in https://en.wikipedia.org/wiki/Paternoster.

2The following symbol, tau, seems appropriate. https://en.wikipedia.org/wiki/Tau.
rho”;. The shorthand “p; transmission” (or reception) refers to frames for flow i containing up to p; octets. “p; frames” are frames containing p; octets.

3u

4As described in this note, the reservation includes any per frame overhead that is consistent throughout the network. The possibility of making a reservation
for a flow passing through any given port has to take into account the possibility of headers/tags being been added to that frame (and to the frames of existing
reservations) and any per frame overhead particular to that port. An awareness of the flow’s packet size distribution can help maximize link utilization.

Revision 2.1 May 8, 2019

Mick Seaman 1

https://en.wikipedia.org/wiki/Paternoster
https://en.wikipedia.org/wiki/Tau

Paternoster policing and scheduling

Transmission order not overconstrained

The queues do not have to be serviced as pure FIFOs,
provided that the transmission selection used provides
the reserved bandwidth to any frames eligible for
transmission in an epoch, and the prior queue is
emptied before any frames are taken from the current
queue.® If one or more packet can be transmitted, then
one of them should be.

Worst case flow interference

Paternoster makes no assumptions about the relative
speeds of links and fan-in (how many links might
contribute frames to a flow on a single outbound link).
All the frames that could be received for a given
outbound link might arrive at the same time, or with
any other inconvenient timing. Delays caused by
interfering flows are not predictable, except for the
fact they do not compromise the delay bound.
Consider, for example, a flow passing through Alice,
Bob, and Charlie, top to bottom in Figure 3 .

/ _-
~
Alice
P ’r”
Bob
A~ K
Charlie
a7 K

Figure 3—Cross-flow interference

Frames for some other flows sharing the Alice-Bob
link might arrive at Alice and depart at Bob (as shown
in blue), while others (in red) share the Bob-Charlie
link. If these cross-flows each comprise a single frame
per epoch, each arrive on separate links, and
collectively dominate the bandwidth on the shared
links, frames for our victim flow (top to bottom) can
be queued for transmission at any time within their
selected epoch. The delay variation for one hop can,
with the interfering cross-flows as shown, be
independent of the delay on the next.®

SFIFO transmission is required for aggregate flows, see later.

Bunching and queue draining

Alice could transmit frames for a given reservation
towards the end of one epoch and towards the
beginning of the next. Bob might then receive both
(sets of) frames’ in a single epoch, adding the first to
the current queue and the second to the next as in the
two scenarios shown in Figure 4.

Alice | | | | | |
vy L T
Bob | ¢ " | cc | ¢ | |
AR R
Charlie LR K K K
Alice | | | | | |
vy Y Y Y
Bob | ¢ " I ce | Cc | ¢ |
(A A O A
Charlie K K K K K

Figure 4—Variable transmission timing

Because frames for a flow i can arrive and be added to
the current queue at the end of an epoch, paternoster
permits the transmission of up to 2p; octets of that
flow in an epoch: i.e. all the frames in prior epoch’s
current queue (now labelled prior) in addition to any
frames received in the present epoch for which
bandwidth is available. See Figure 5.

IR IR
I T T T S

ul

A A A

Figure 5—Bunching

The bandwidth allocated for any service class should
exceed the sum of the reservations for that class by at
least one maximum sized packet (for that class) per
epoch. Thus, in any epoch, a completely full prior
gueue can be transmitted and an opportunity provided
to transmit at least one frame from the current queue.®

6Given more information about other flows the delay variance, and indeed the end to end delay bound for the victim flow, can be reduced, but that would run
counter to the spirit of paternoster (simple calculation without the assuming overall knowledge of flow patterns) and tend towards Asynchronous Traffic
Shaping. In the latter’s terms paternoster assumes a worst case multiplexing delay at each hop.

" The figures show selected packets and their timing relative to each node’s epochs. They should not be taken to imply that reservations accommodate only
one or two packets per epoch—other packets with similar timing (or timing irrelevant to the point being made) may have been transmitted.

81f the current queue is empty at the start of the epoch it is not necessarily the case that one of its packets will be transmitted, even if it is not empty at the end
of the epoch. However if the current queue (the prior epoch’s next queue) is not empty at epoch start it will contain at least one packet less than its reservation
permits by epoch end, thus allowing at least two packets to be taken from the next queue (if it contains those packets at epoch end) when it becomes the
current queue in the following epoch. Thus the queues will progressively drain, even if the current queue is replenished a steady rate, up to the point where

intervals of no reception allows following bunched reception to occur again.

Revision 2.1 May 8, 2019

Mick Seaman 2

Paternoster policing and scheduling

In Figure 5, frames 2, 3, and 4 are received into
Charlie’s next queue, with reception into Charlie’s
current queue only when Alice s in-epoch transmission
timing of frame 5 reverts to that used for frame 1. If
Alice persists with the timing used for frame 4, the
delay associated with Charlie receiving into next and
transmitting in the following epoch will also persist,
and the effect of allowing Bob to transmit from both
prior and current queues in a single epoch has been to
move the delay from Bob to Charlie. That persistent
delay is a consequence of the general rule that a flow
will not drain from network queues if the applied load
matches the network service rate. p; is an upper bound
for Alice’s transmission of flow i in an epoch, not a
desirable operating point.

Alice could decide to transmit one less frame than
permitted in each epoch. However, end-to-end delay is
a critical parameter for applications requiring bounded
delay and is a multiple of 1, so the latter may be
chosen to accommodate transmission of a just one
frame from each of a number of participants. Doubling
p; to facilitate queue draining would double delay
bounds and halve the available bandwidth. A flow
source does better by using a slightly longer epoch:
with t; = 1.25t and a single frame per epoch, a
network node can reduce any backlog every fifth
epoch (on average). See Figure 6.

R
R

i

Charlie does not add a frame to his next queue in the
epoch following the reception of frame 3, so the
following frame 4 is added to the current queue (and is
eligible for transmission) in the epoch after that.
Transmit bursts

If frames containing 2p; octets for flow i are
transmitted in a single epoch (transmission of a full
prior queue, holding frames all received into the
current queue of the previous epoch, plus complete
use of the present epoch’s current queue), then at
most p; octets will have been transmitted in the
immediately prior epoch (from the prior queue for that

R

Figure 6—Queue draining

epoch) and at most p; octets can be transmitted in the
following epoch (because the present epoch’s current
gueue will be exhausted).9 See Bob s transmissions 1
and 2 in Figure 5.

Receive bursts

A receiver (whose epochs are assumed not to be
aligned with the transmitters passing it packets) can
thus receive, in one of its own epochs, at most 3p;
octets for flow i (2p,; towards the end of one of the
transmitter’s epochs and p; from the beginning of the
next, or p; from the end of one and 2p; from the
beginning of the next). Those frames are added to the
current, next, and last queues. See Figure 7.

AL 4 '6¢'|
. i E
pon || °| ; i|i

Figure 7—A receive burst

While a frame can spend up to four epochs at a node’®
(e.g. frame 3 at Charlie in Figure 7) that is only
possible if prior frames have been delayed and the
frame in question has caught up (concertinaed) with
them. The delay expands the burst, resulting in less
delay at subsequent nodes. Alternatively the burst can
propagate, with the later packets spending less time at
the intervening node (e.g. propagating from Charlie to
Don in Figure 8, with frame 3 spending at most two
epochs at Charlie).

SRR
Charlie | ;;Zii ; ;
R A

Figure 8—A receive burst (2)

9Because transmitting more than one epoch’s worth of traffic in one of the transmitter’s epochs depends on carrying over traffic from the prior epoch, once a
transmitter has transmitted two epoch’s worth in a single epoch it cannot do so again until it has accumulated an epoch’s worth of backlog. The scenario 2|1|2

is not possible.

10} ess the allowance made for queue draining (previously described) and for variable transit delays (see later). The fact that Charlie does not transmit
anything in the epoch in which he receives frames 1, 2, and 3 may require explanation. These may have all been received too late to be transmitted in that
epoch (frames for other flows may also have been received after the start of the epoch, but before these frames, and are taking the bandwidth). Frames in the
prior queue at the start of an epoch are guaranteed to be transmitted by the end of the epoch, other frames can be delayed to a following epoch.

Revision 2.1 May 8, 2019

Mick Seaman 3

Paternoster policing and scheduling

Buffering requirements

The buffering at a node, for a service class, is bounded
by the total per epoch reservation for that service class,
multiplied by the number of per epoch queues (four—
prior, current, next, and last).11 This may seem high,
but is a consequence of the worst case receive
assumptions described above.

Transit delay variations
If the participant to participant transit delay varies then
the frames of two transmission epochs can be received

in a single epoch, even if there is no variation in
initiating transmission. See Figure 9.

Alice | | | | | |
Y oN oy Ny
Bob | cl | c c n | c c |
A
Charlie |c | ¢ | € | © |

Figure 9—Variable transit delay

If transit delay is measured from a transmitter’s
acquisition of the last octet of a frame to be forwarded
to the recipient’s acquisition of that last octet!?, then
variations in packet size imply variations in transit
delay. Preemption can also significantly increase the
on-the wire transit time, and transit time variability, of
a preempted frame. The receiving node can contribute
a variable delay if, for example, the assignment of a
received frame to an epoch queue is only made once
that frame has transited an internal forwarding fabric.

However, if the time to transmit a full prior queue,
plus the transit delay variation, plus any difference
between participants’ epoch durations does not exceed
7, then extra queues are not required: four epoch’s
reservations cannot be received in a single epoch (in
Figure 8 frames 1, 2, and 3 from Bob are not delayed
to the extent that Charlie receives them in the same
epoch as frame 4). Any bandwidth given up to satisfy
this constraint can be used by best effort traffic.

End-to-end delay bounds

While the maximum frame delay at a single node is
node is 4r, this delay cannot be encountered at every
node (see discussion of Figure 8). The worst case
end-to-end delay can be bounded without attempting
to enumerate every possible forwarding pattern by
observing that earlier arrival of any given frame at any
node will not lead to its later departure. We can,
therefore, bound delays based on those experienced by

a set of frames spaced out for easy analysis. See
Figure 10.

;B\z:e |%l |2 %I * | l | l | |
o i i i i
o i i i

Figure 10—End—to-end delay

An initial frame 1, transmitted by Alice at the end of an
epoch, arrives at each subsequent node just after
(arbitrarily close to) the beginning of an epoch, is
received into the current queue for that node, and is
transmitted from the prior queue just before
(arbitrarily close to) the end of the following epoch.
Ignoring the constant portion of the node to node
transit delay’®, this delays the frame by 2t for each
hop internal to the network, a total of (24 - 1)t (where
h is the number of hops from source to destination). A
second frame, transmitted t after the first, experiences
the same delay. Alice transmits frame 3 at the
beginning of an epoch, arbitrarily soon after frame 2.
That frame will experience a 3t delay at Bob, and then
27 at each subsequent node for an end-to-end total of
2ht. Frames 4 and 5, transmitted at Alice’s earliest
following opportunities also experience an end-to-end
delay of (at most) 2At, our end-to-end bound. While
detailed analysis of over-provisioning, fan-in,
transmission speeds, and packet sizes can reduce this
bound, the attractiveness of a good simple scheme is
not having to do that analysis.

Class of service epochs

The duration of an epoch, t, does not have to be the
same for each class of service (though must be
consistent network wide). If differing epochs are used
they are arranged and used in a way that ensures each
does provide the requisite bandwidth for each class of
service in each epoch. One possibility is to use strict
priority transmission selection, with lower priority
classes using a period of twice the duration of the
higher priority classes and an epoch start that is
aligned with that of alternate high priority epochs. In
this arrangement the amount of bandwidth that the
higher priority classes can take from that available to
those of lower priorities is consistent for each of the

1see Iater for circumstances when the use of additional epochs (and hence the use of additional queues) might be warranted.

12 useful measure for present purposes since it measures the interval between the time at which the transmitter can check the FCS and make decisions on the
frame, including initiating transmission, and the time at which the recipient can do likewise.

13Assuming that the variable portion is at its maximum, taking up all the slack provided for it.

Revision 2.1 May 8, 2019

Mick Seaman 4

Paternoster policing and scheduling

latter’s epochs (which would not be the case if the
epoch starts were not aligned).

Additional epochs

Additional epochs, with next but one, and
next_but two, ... queues before last can be used to
accommodate network links with greater transit delay
variation,'* without the need to have a separate
network-wide class of service (with increased t) to
carry traffic that transits (or might transit) those links.
The additional queues are needed only in the nodes
attached to those links. They provide play-out
buffering to shape traffic entering regions of the
network using the usual four queues.

Best effort

As described above, best effort frames can be
transmitted at a strictly lower priority, filling in the
transmit opportunities left by reserved traffic in any
given epoch. The bandwidth remaining after fixed
reservations should allow for at least one maximum
sized best effort frame per epoch , so the transmission
of a best effort frame that extends from the end of one
epoch into the start of another does not violate the
reserved bandwidth commitment for the latter.

The amount of best effort traffic already queued can
also be compared with the spare bandwidth available
for forthcoming epochs and further best effort packets
dropped if their anticipated transmission time is too far
into the future—effectively sizing the best effort queue
to provide delay bounds. A multi-queue algorithm can
be used to bound transmission delays without
restricting the amount of bandwidth used in an epoch.

Comparison with peristaltic shaping

The peristaltic shaper (802.1Qch, Cyclic Queue and
Forwarding) synchronizes the epochs used by bridges
throughout the network and (in paternoster algorithm
terms) queues each relayed frame for the next epoch
and transmits only from the current epoch. The
peristaltic shaper’s worst case forwarding delay
through a single bridge is 2t. However the peristaltic
shaper’s synchronization means that the delay across a
network of 4 hops is between (& - I)t+d and (h +
)+, where ¢ is the forwarding delay through a
single relay, ignoring the eventual transmitting port’s
queuing strategy. The paternoster algorithm’s network
delay will be between 46 and 24t , though the average
delay is likely to be strongly weighted to the lower of
these—if none of the inputs to the network vary each
relayed frame will be queued and transmitted within
the current epoch.

14Connecting local sites across provider networks, for example.

As compared with the peristaltic shaper then, the
paternoster algorithm gives up some delay
predictability in exchange for not requiring clock
synchronization and for reducing the average delay. It
should also be pointed out that the constraints on
epoch duration t are not the same for both algorithms.
If the peristaltic shaper receives more than an epoch’s
permitted reservation within an epoch, the excess has
to be discarded, whereas the paternoster algorithm can
distribute the unevenly spaced input over two
successive epochs, and can thus provide the same
service with half the epoch duration. Against this has
to be set the possible difficulty of making small
reservations when using very short epochs.

Average end-to-end delays

More needs to be said about the potential benefit of
reducing average delays. A recent but generally
expressed view is that the users of time sensitive
networks only care about the delay bound guarantee,
and that any earlier delivery of any particular frame is
irrelevant. In the short term, and for particular uses
cases, this may be true: in simple control applications
bounding the delay in a negative feedback loop is vital
to stability; control theory is an intensely difficult
subject, and forcing re-engineering of existing
applications when introducing a new sensor network
may be prohibitively expensive. However in the
longer term focusing solely on the delay bound might
causes us to miss significant opportunities. A delay
bound requirement for satisfactory operation can be
significantly tighter than that for stability limits.'®
Designing to that tighter bound may preclude the
replacement of TDM small cell networks with packet
networks in some applications. The speed with which
a controlled task can be accomplished is often
important, and can benefit from lower delays than
those essential for maintaining control stability while
it is being performed. Some control paradigms use
models of the expected plant response to efferent
copies of control inputs together with time
compensated feedback, and we should be able to take
advantage of those paradigms.

15The timing requirements for virtual reality applications serve as an example. Is it sufficient for the user to be just on the right side of throwing up throughout
the whole performance, or is something much better 99.99% of the time desirable. Considerations of external factors point out other examples where wild
excursions from the controlled ideal are tolerated as long as they are infrequent (and not attributable to a design defect).

Revision 2.1 May 8, 2019

Mick Seaman 5

Paternoster policing and scheduling

2. Shared media

Paternoster can be used with shared media that
supports (at least) two levels of per frame priority.16

reservations in scenarios where Bob’s epochs are
offset.

Priority use

Precedence is given to frames transmitted from the Alice
prior queue for each port attached to the shared media. | | |
Frames in the current queue on any port are not
transmitted until all the prior queues have been Bob
drained.1” The various port’s epochs do not have to be
aIignedlB: as long as the sum of the reservations for all
the ports do not exceed the medium’s capacity, each of
the prior queues will drain in its own port’s epoch.

Charlie

Examples Figure 12—Shared media use (2)

Figure 11 shows the prior queue occupancy over time

for three ports19 attached to the same shared medium.

Received frames are not added directly to a prior _
queue. At the beginning of each of a port’s epochs its Alice | | |
prior queue contains the frames (if any) left on the

previous epoch’s current queue. At a maximum this Bob
will be the sum of the reservations for that port. For
simplicity the figure shows that maximum, neglecting
the possibility that frames from that queue could have
been transmitted in the previous epoch at a time when
all the prior queues are empty.

Charlie

Figure 13—Shared media use (3)

Alice

Urgency not ‘fairness’

In each of the figures, the queues are shown as
Bob draining and equal rates when two (or more) current
queues are occupied at the same time. This is not an
essential feature of the algorithm, it is sufficient that
the available bandwidth be used to drain any
non-empty prior queue. Above the MAC, paternoster

Charlie

Figure 11—Shared media use (1)

Since the sum of the reservations for all the ports is
less than the total available bandwidth, there will be at
least one period in each epoch when all the prior
gueues have been drained. Figure 12 and Figure 13
show the prior queue occupancies for the same

is using priority to communicate urgencyzo—meeting
delay bounds depends on draining those queues. Per
packet priority is sufficient, and indeed all the frames
for the highest priority for a given port might be
transmitted before giving the next port a chance to
transmit, though delay variance should improve with a
more granular approach to frame interleaving.

16 A priority mechanism has been proposed (though not currently adopted) for use with 802.3 PLCA (Physical Layer Collision Avoidance). As | understand
this proposal, two (or more) levels of priority are encoded in the Beacon that is passed around the (logical) ring of stations attached to the shared media. A
station that has a highest priority frame to transmit can take immediate advantage of the passing Beacon, a station with a frame of lower priority might encode
that priority in the Beacon and transmit if the Beacon comes round again with no increase in its priority field. There are some obvious details/variants to such
a scheme, and here is no need to spell them out here, other than to note that the goal is absolute priority - not the physical layer’s opinion of fairness. There is
no need to revisit the discussions of the early 1980°s.

17 Frames in the next and last queues are not candidates for transmission until changes in epoch identify them as on the current queue. As per the paternoster
algorithm they are not transmitted: to do so early would risk frame loss further on the path to their destination. Best effort frames can share the lower priority
level with frames from the current queue, though they are queued separately. An obvious plan would prefer transmission from the current queue (if not empty)
though if there really is no value in delivering earlier than necessary to meet the guaranteed delay bound, best effort should be preferred over current.

18Though there are, as in the basic paternoster algorithm
180ur familiar friends Alice, Bob, and Charlie, this time in a different configuration.

20 more sophisticated scheduling algorithm than paternoster might use finer grades of relative urgency to coordinate access to the shared media, reflecting a
frame’s queue residence time, but | would expect diminishing returns for increased complexity, with priority signalling still the appropriate mechanism.

Revision 2.1 May 8, 2019 Mick Seaman 6

Paternoster policing and scheduling

3. Aggregate flows

While the per-flow state required by paternoster may
meet the needs of networks using per-flow reservation
and monitoring, there is always interest in reducing or
eliminating per-flow state. This section considers the
effect of applying a single bandwidth allocation to
multiple individual flows, assuming that each first hop
polices its flows separately and that each node has
sufficient flow recognition capability to determine
which flows are, or are not, in an aggregate.

Forwarding constraints

An aggregate flow’s reservation can be large, possibly
covering all the frames on a link for a given service
class. The bounded delay and lossless characteristics
of individual flows are preserved by constraining how
they are multiplexed into an aggregate, how the
aggregate is forwarded, and how individual flows are
demultiplexed from the aggregate.

Individual flow forwarding (recap)

When frames for an individual flow are forwarded, the
first frame transmitted from a prior queue to the next
port on the path to its destination will be?!:

a) received into the current queue, and forwarded by
before the beginning of receiver’s next epoch; or,

b) received into the current queue, and forwarded
from the receiver’s prior queue in its next epoch; or,

c) received into the next queue, and forwarded from
the current queue in the receiver’s next epoch; or,

d) received into the next queue, and forwarded from
the prior queue in the receiver’s next but one epoch.

Any subsequent frames from that prior queue will be
treated in the same way, or as specified by a later item
in the above list, or:

e) received into, and forwarded from the current
queue in the receiver’s next epoch; or,

) received into the current queue in the receiver’s
next epoch, and forwarded from its prior queue in
the following epoch.

Bob |
()] ()

| |
REER
n n Cc

i c c
Charlie (&,

| ¢ second | third
(ai (bi (Ci (ei (di (f)i

Figure 14—oprior queue next hop possibilities

Figure 14 illustrates these possibilities for a frame
forwarded by Bob to Charlie, with Charlie’s epochs
identified (first, second, ...) relative to the first that
could receive Bob s initial transmission.

Potential aggregate multiplexing issues

If Charlie multiplexes the frames from Bob with those
of another flow (from Brian, say) received on a
different port, using only parameters associated with
their combined reservation(p g egarer Sy) some of
Brian’s frames that his individual flow reservation
would have forced into Charlies next queue [e.g.
cases (c) and (d) above] could take advantage of that
larger reservation and be received in the current queue
[as per case (b)]. Those frames, by lowering the
remainder of p,gqregq associated with that current
gueue could displace one or more of Bob’s frames that
his individual reservation would have enqueued in
current [as per case (b)] into next, potentially delaying
their transmission [as per case (d)]. Frames are not lost
as a result of this shift, as there is both sufficient
bandwidth to accommodate the aggregate flow and
that bandwidth is being used (otherwise the shift
would not occur). However the transit delay
experienced by Bob’s frames can have a greater
variance. A burst from Brian (as in Figure 7) could
result in frames from Bob’s prior queue being
enqueued in Charlie’s last queue, and an additional
epoch delay before they are transmitted by Charlie.

An individual flow might be multiplexed into a larger
aggregate at multiple nodes on the path to its
destination, each adding this extra delay.

Aggregate multiplexing

To avoid the delays described above, a node that
multiplexes flows received on two or more ports into
an aggregate flow transmitted on a third port uses the
reservations for each of the flows received on each
reception port to select between the outbound port’s
current, next, and last transmit queues. The delays
experienced by the individual flows’ frames within an
aggregate are those that would occur if their individual
reservations had been used.

Fifo forwarding

As previously described, the paternoster algorithm
does not constrain transmission order beyond
requiring transmission of all frames from a prior
queue before any from the same port’s current queue.
However that does raise the possibility of preferring

21 There is no later reception queue than Jast. Frames transmitted can be transmitted from both prior and current, and those from current are guaranteed to be
received without loss. Since current could fill the last queue, frames from prior must be received into current or next. Frames from a single transmit queue
cannot overrun a single reception queue, so if frames from prior were being received into next in the receiver’s preceding epoch and that prior queue is not yet
exhausted its remaining frames will be received into current (renamed on the change in the receiver’s epoch) in the receiver’s present epoch. If they were
being received into current in the preceding epoch they will be now be received into the new, separate, current queue for the present epoch.

Revision 2.1 May 8, 2019

Mick Seaman 7

Paternoster policing and scheduling

(deliberately or accidentally) frames of one individual
flow constituent of an aggregate flow over another,
progressively shuffling some flows’ frames earlier
(and those of other flows’ later) in the outbound
queues of successive ports along the aggregate’s path.
This shuffling increases the probability of any given
port queue (current, next, or last) containing more
frames for an individual flow than would be permitted
by that flow’s individual reservation. This is not a
problem while the aggregate is forwarded as a whole,
but can be when it is demultiplexed. The effect is
reduced, and its analysis simplified, by requiring FIFO
transmission of the prior and current queues when
they include an aggregate flow.

Aggregate forwarding and individual flow bursts

If any aggregated individual flow i does not consume
its p; contribution to the p,gereqqe PErMitted in a
forwarding port’s transmission queue, another flow j
can add more frames than p; would permit. If
Pugaregate 1S MUCh greater than p;, this accumulation
could occur at every hop on the aggregate flow’s path.
While j 5 frames near the front of the queue could have
been delayed by up to 2t per aggregate hop, the
following frames might have experienced minimal
delays unchecked by p;. A given queue at aggregate
hop @ could contain an excess of a much as 2ap; octets
for j (see Figure 1522). The excess could also be
distributed over adjacent queues, though (as in
individual flows) cannot be repeated until after a lull.
A limit (in a single queue) to this accumulation is
reached as ap; reaches p,qqrequre-

Alce l l l | l | i | i |
Charlie| |$;; l i i
TR R
Eric | | | 12347;4

Figure 15—FIlow burst within an aggregate

Aggregate demultiplexing

Each frame demultiplexed from an aggregate flow
(into an individual flow or another aggregate) is
assigned to a queue that reflects its eligibility time for
transmission, using additional epochs (each with its
gueue) to remove any burst accumulation within the
aggregate. These queue can require additional

buffering, since it can be occupied for longer before
being recycled,?® with an upper bound based on a
hypothetical worst case as follows: the demultiplexed
flow has been experiencing the maximum possible
cumulative delay through the nodes in the aggregate’s
path, due to the presence of cross-traffic (not in the
aggregate), despite the fact that all the other flows in
the aggregate are quiet, then the cross flows become
silent, allowing all the delayed frames to arrive at the
demultiplexing point at the total aggregate rate, while
they depart at a rate set by the reservation for the
demultiplexed flow. In this scenario, the additional
buffering for a demultiplexed flow ; that is small
compared to the aggregate, which is itself small
compared to the overall link bandwidth is 2ap;. The
worst case additional buffering for an aggregate that is
demultiplexed occurs when demultiplexing a flow that
has a reservation that is half of the aggregate’s total,

and is ap ggregase! 2-

Aggregate delays

The maximum end-to-end delay of (24 - 1)t for an
individual flow is not increased by including that flow
in one or more aggregates along its transmission path.
The additional epochs required to “play out’ individual
bursts within an aggregate do not add to the delay
bound, since they are only used when frames have
arrived early relative to previously delayed frames.

22 |n the figure, Eric does not receive a frame 7 in the same epoch as frames 1 through 6. That is a possibility, but is difficult to show latest possible
transmission and earliest possible reception node to node in a figure where transmissions take up space (time).

235 opposed to following the usual four epoch sequence, with potential reuse of an emptied prior queue’s buffer’ for the last queue in the following epoch.

Revision 2.1 May 8, 2019

Mick Seaman 8

Paternoster policing and scheduling

A. Pseudo-code

The following ‘C’ code fragments illustrate the
algorithm and highlight various points about its
externally observable behavior—they are not
intended to constrain real implementations in
any other respect.

See Figure 16. Successive epochs and their
current transmit queues are identified by the
cyclically repeating series Zero, One, Two,
The present epoch for each port and class of
service can differ: epoch array elements identify
their present prior, current, and last epochs®*
and currently selected tx (transmit) queue (prior
or current)>.

The reservations information for each port, class
of service and packet stream or flow?®
comprises the number of transmitted octets
(including the overhead attributable to each
packet) permitted for that flow in an epoch, the
epoch (queue_for: current, next, last) for
which that reservation’s packets are being
queued at present, and the remaining octet
allocation for the reservation in that epoch.

See Figure 17. When a packet (for an egress
port and class of service) is relayed, its transmit
packet_allocation is subtracted from that remaining
for its reservation’s present queue_for epoch. If
the packet will fit it is enqueued, and if the
remainder iS not zero (indicating the possibility
of queuing further packets for that epoch) the
number remaining is updated and the procedure
returns True (indicating success). If the packet
was an exact fit, and the reservation had not yet
begun queuing for the following epoch,
queue_for is advanced to that epoch and the
number remaining reinitialized to the permitted
quota before the procedure returns. If the packet
didn’t fit and the reservation has not yet
advanced to the next epoch, the remainder is
recalculated for that epoch with its updated
allocation. This second attempt might succeed
or fail (the total permitted allocation might be
less than required for the packet’s size). If the
packet is not enqueued the procedure will
return False, with queue_for identifying the
next_epoch and remaining the excess of the
(possibly multiple) queuing attempts in excess
of the permitted allocation.

24The current value of all three epoch identifiers can be derived from any one: this structure avoids the need for modular arithmetic in the following code.

typedefint Int; // Types and constants case stropped by convention.
typedef Int Port_no;
typedef Int Class; /I Class of service

#define Epochs 4 // epochs and transmit queues for each port and class
#define Reservations // number (arbitrary) of reservations per port and class

typedef Int Epoch; I/l {Zero, One, Two,. Queues-1} repeating
typedef Int Allocation;
typedef struct
{
Epoch prior;
Epoch current;
Epoch last;
Epoch tx;

} Port_class_epoch;

typedef struct

{
Epoch queue_for;
Allocation remaining;
Allocation permitted;

} Reservation;

Epoch following[Epochs];

Port_class_epoch epoch[Ports][Classes];

Queue queue[Ports][Classes][Epochs];
Reservation reservations[Ports][Classes][Reservations];

Figure 16—Data types and structures

Boolean relay(port_no, class, reservation, packet, packet_allocation)

Port_no port_no;
Class class;
Reservation *reservation;
Packet packet;
Allocation packet_allocation;
{
Allocation remainder;
for(;;)
{

remainder = reservation->remaining - packet_allocation;

if ((remainder >= 0)
{
enqueue_packet(port_no, class, reservation->queue_for);
}
if ((remainder > 0) ||
(reservation->queue_for == epoch[port_no][class].last))
{
reservation->remaining = remainder; return (remainder >= 0);
}
reservation->queue_for = following[queue_for];
reservation->remaining = permitted;
if (remainder == 0)
{
return (remainder >= 0);

Prd

Figure 17—Queuing a relayed packet for transmission

The queue structures themselves are independent of this description and are not included in Figure 16.
The procedures and criteria for associating any given packet with a particular reservation are independent of the present algorithm.

Revision 1.0 May 8, 2019

Mick Seaman

Paternoster policing and scheduling

Note that if the relayed packet cannot be queued
for the an epoch, no part of that epoch’s
allocation is carried forward to the following
epoch. Nor is any subsequent smaller packet
queued for any epoch once that epoch’s
permitted allocation has been exceeded.

See Figure 18. When an transmit opportunity
for a port and service class arises, this procedure
attempts to dequeue a packet from the epoch.tx
gueue. Initially, i.e. following the start of a fresh
epoch, this may be the queue associated with
prior epoch, as packets can be added to that
queue (reservations permitting) right up to the
end of the prior epoch (when it would have
been current).

If the dequeue operation returns a packet, or the
epoch.tx queue is already that for the current
epoch, the procedure returns the packet (or a
null pointer if no packet was available).
Otherwise epoch.tx is updated to refer to the
current epoch queue and the dequeing operation
reattempted. Note that once the current epoch
has started packets will no longer be added to
the prior queue, so once the latter has been
drained the transmit focus selection can shift to
the current epoch’s queue. Packets can be added
to and removed from this queue throughout the
current epoch, though packets for some
reservations (in excess of their per epoch
permitted limit) can be placed on the next
epoch’s queue, thus delaying their transmission
(see Figure 17).

See Figure 19, which completes the model with
the operations necessary when an epoch gives
way to its successor. By this time the prior
transmit queue should be empty (if the permitted
total for all reservations has not erroneously
exceeded the transmit capacity) — the queue is
purged (emptied) to guard against persistent
errors. The prior, current, and next epoch
identifiers are updated (if they were Zero, One,
and Two, they become One, Two, and Zero
respectively). Then each reservation that is not
already queuing to the (new) current epoch is
updated to queue_for that epoch with its
remaining allocation initialized to the permitted
allocation for an epoch.

Revision 1.0 May 8, 2019

Packet tx_select(port_no, class)

Port_no port_no;
Class class;
{

Packet packet;

for(;;)
{
packet = dequeue(port_no, class, epoch[port_no][class].tx);
if ((packet != Ptr_to_null) ||
(epoch[port_no][class].tx == epoch[port_no][class].current))
{
return(packet);
}

epoch[port_no][class].tx = epoch[port][class].current;

}rd
Figure 18—Transmit selection

epoch_tick(port_no, class)
Port_no port_no;
Class class;

{

Epoch temp = epoch[port_no][class].prior;
purge_queue(port_no, class, epoch[port_no][class].prior);
epoch[port_no][class].prior

epoch[port_no][class].current
epoch[port_no][class].last

= following([port_no][class].prior);
= following([port_no][class].current);
= following([port_no][class].last);

for(i = 0; i < Reservations; i++)
{
if (reservations[port_no][class][i].queue_for =
epoch[port_no][class].current)
{
reservations[port_no][class][i].queue_for =
epoch[port_no][class].current;
reservations[port_no][class][i].remaining =
reservations[port_no][class][i].permitted;

}r}

Figure 19—Epoch updating

Mick Seaman

	Paternoster policing and scheduling
	1. Introduction
	2. Shared media
	3. Aggregate flows

