
Multiple Cyclic Queuing and Forwarding
(slides to accompany df-finn-multiple-CQF-0919-v01)

Norman Finn
Huawei Technologies Co. Ltd
nfinn@nfinnconsulting.com
df-finn-multiple-CQF-slides-0919-v01

Why this paper?
Cyclic Queuing and Forwarding is perceived as having major flaws,
which prevent its adoption:
• It is difficult to pick a cycle time:
• A long cycle time produces long end-to-end latency.
• A short cycle time severely restricts the number of flows handled.
• No one cycle time serves more than a narrow range of requirements.
• Having 2-buffers per hop precludes long links.

With a little imagination, these issues can be solved without adding
anything to IEEE 802.1Q, so the solutions are suitable for P802.1DF.

Step 1: You can run with 3 buffers, not 2
! With 2 buffers, you change input buffers at the same moment

that you change output buffers.
! Link delay and forwarding delay have to be subtracted from the useful

bandwidth, to prevent filling and emptying a buffer at the same time.
! If you have 3 buffers, then you can change to the next input

buffer at a different phase of the cycle from when you change to
the next output buffer.

! Each buffer spends part of a cycle idle; one cycle per hop is added to the
latency.

! But, the link delay and forwarding delay are no subtracted from the
bandwidth..

Two buffers
Two buffers per port. Input and output buffers swap at the
same moment, once every cycle, period TC. Small guard band
to allow for link delay and forwarding delayu. All bridges are
synchronized and swap buffers at the same moment. Cycle
time TC > transit time + forwarding time + clock inaccuracy +
max data transmit time.

7/16/2018 4

Two buffers

7/16/2018 5

TICK!

Two buffers

7/16/2018 6

TICK!

Three buffers
Input buffer swap is out-of-phase with output buffer swap to
allow for arbitrary link delay.
No guard band needed for link/forwarding delay.
Each buffer cycles through four states: filling, full, draining,
empty

7/16/2018 7
7/16/2018 7

Three buffers

7/16/2018 8
7/16/2018 8

TICK!

Three buffers

7/16/2018 9
7/16/2018 9

TICK!

Three buffers

7/16/2018 10
7/16/2018 10

TICK!

Three buffers

7/16/2018 11
7/16/2018 11

TICK!

Three buffers

7/16/2018 12
7/16/2018 12

TICK!

Three buffers

7/16/2018 13
7/16/2018 13

TICK!

N buffers
Any number of buffers per port. Useful for delay matching on
different paths.

7/16/2018 14
7/16/2018 14

The number of buffers used by a stream
!Different output ports on one system can have different numbers

of buffers.
!Different input ports feeding the same output port can each use a

different number of the buffers on that output port.
!One Stream can use a different number of buffers at each output

port along the path.

Timeline 2:
Assigning frames to output buffer in Node B 2-buffer: discard

3-buffer: send to buffer a

T=0.3 T=1.3

Timeline 3:
Storing frames in output buffers in Node B

T=0.5 T=1.5 T=3.5

T=0 T=1 T=2 T=3

2-buffer: send to buffer c
3-buffer: send to buffer a

NODE B

T=2.5

Minimum forwarding delay
Maximum forwarding delay
Forwarding delay variation

Timeline 4:
Transmitting frames from Node B

Slope of maximum
forwarding delay

TW wait
time

T=0 T=1 T=2 T=3

T=2.3 T=3.3

Timeline 1: Transmitting frames from Node A

minimum
link delay = 1.3TC

max interference time T
I

variation time TV

output continues (3-buffer)

NODE A

NODE B

NODE B

dead buffer time TB

output continues (2-buffer)

allocable to Streams T
A+TP

df-finn-multiple-CQF-0919-v01 Figure 1 Reference timelines for time-based CQF

Example of
Multiple cycle times on one output port
! Four cycle times at four priorities 3-6.
! 1 priority 3 cycle, buffers h, i (not shown)
! 3 priority 4 cycles, buffers f, g
! 6 priority 5 cycles, buffers d, e
! 24 priority 6 cycles, buffers a, b, and c.

Best effort
4

5
6

Time -->

Transmission order
! The total bandwidth allocated over all CQF priorities cannot

exceed the link bandwidth.
! Draining of CQF buffers are by strict priority, fastest cycles first
! As long as every cycle is an integer multiple of the next-faster

cycle, every buffer will empty before the end of its cycle.

More ways to improve the options
available to CQF.
! Preemption:
! Lowers the interference from lower-priority queues, especially best-effort
!CQF queues can be preemptable, because the preemption penalty is

bounded.
! Packing varied frame sizes into cycles can require overprovision:
! “Sausage making,” packing the customers’ packets into fixed-sized

encapsulations, requires much less overprovision, and can be done at the
edges of a Service Provider network.

! In multiple CQF, deliberate overprovision of a Stream (assigning it
to a too-fast cycle) reduces its latency.

The multiple-CQF value proposition
! CQF, as described here, requires network time synchronization.
! CQF requires time-aware state machines on input/output ports.
but,
! Except, perhaps, for the ingress bridge, CQF requires no per-

Stream configuration, no per-Stream state machines, no per-
Stream knowledge at any node in the network.

! CQF allows a network controller to perform admission control with
no per-flow conversations with any (except perhaps the ingress)
nodes in the network.

To come …
There are many more improvements that can be made to TSN, many
of which require no new standards. I hope to supply more papers
and presentations in this vein.

Thank you

