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Discovery Protocols
– New IETF work on Link State Vector Routing (lsvr) has resulting in development of a discovery protocol called 

Layer 3 Data Link (l3dl) also IETF bgp group has a contribution for neighbor discovery protocol
– The lsvr draft in progress draft-ietf-lsvr-l3dl-00
– The idr contribution draft-xu-idr-neighbor-autodiscovery-11

– Work recently completed at IEEE on extensions to Virtual Station Interface Discovery and Configuration Protocol 
(vdp) in 802.1Q-2018 clauses 40, 41, and 43 plus the new amendment 802.1Qcy-2019 (extends VDP to cover 
IP addressing for split NVE or NVO3)

– Work in progress at IEEE on Auto Attach (P802.1Qcj) which is currently described for Provider Backbone 
Bridges, however could also be applied to EVPN environments.
– Open source for LLDP auto attach is at:  https://github.com/auto-attach/aa-lldpd
– Provides discovery of VID to I-SID mapping for BEBs attaching to servers

– Proposed new IEEE project on LLDPv2 (802.1QBdh) 
– Main purpose is to extend LLDPv2 to support the requirements for lsvr discovery and to support more TLVs
– The LLDPv2 project will be an amendment of 802.1AB-2016 (P802.1ABdh)
– The LLDPv2 project will allow LLDPv2 to send multiple frame databases
– LLDPv2 will be backward compatible with LLDPv1
– LLDPv2 will also add new TLVs to support discovery of IP and MPLS addressing
– LLDPv2 by be sufficient to fill most of the discovery needs without the additional protocols

https://github.com/auto-attach/aa-lldpd
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Objectives for New LLDPv2 Method
– Support LLDP databases larger than a single frame

– IETF is working on discovery database sizes around 64K octets 

– Support the ability to limit the LLDP frame size to meet timing constraints imposed by some TSN applications
– Do we need to split TLVs over multiple PDUs?

– Support the ability to communicate with an LLDPv1 implementation
– Only the first (base) LLDPDU would be exchanged between and LLDPv1 and LLDPv2 implementation

– Support shared media
– Both for the base database and extension database PDUs

– Ensure the integrity of the full set of TLVs is received by partner
– This can be useful in v1 implementations as well
– Do we also need to provide a means to authenticate the LLDP database? The IETF has this requirement.

– Support pacing of frames to receivers to prevent overloading low level network firmware
– Historically OSPF and IS-IS have had problems from lack of flow and congestion management

– Reduce network traffic by reducing periodic transmission to the minimum
– Only update the base LLDPv1 PDU periodically
– Update other PDUs only when they have changed

– Reduce the computational load required by LLDPv2 receivers to update and validate the database

– Other optimizations and considerations which may be useful
– Multiple manifests
– Larger TLVs
– TLVs spanning multiple extension database PDUs
– Database authentication
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Current LLDP Operation

NOTE: Remote and Local MIBs are databases that must fit within a single frame length PDU
Replace all values of the Remote MIB with contents of LLDPDU when something changes
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Proposal
– Define the current LLDPv1 database as the base database 

– Has a size not to exceed a single frame (an LLDPDU is a single frame)
– The base database is exchanged as a single LLDPDUv1 
– Define an LLDPv2 extension database as a database of size 1-n frames described by an LLDPv2 manifest 
– An extension database is exchanged by a set of PDUs identified by the LLDPv2 manifest
– An LLDPv2 manifest is encoded in an manifest TLV and must be carried in the base database
– If no manifest TLV is present in the base database then no extension databases exist
– The upper limit to the number of frames is determined by the LLDPv1 TLV size limit (512) and the format of the 

manifest

– The manifest TLV defines:
– A way to uniquely identify each frame in the extension database

– Transmission of extension PDUs is controlled by the receiver by using explicit requests to the sender
– Extension PDUs are transmitted from the source LLDPv2 Agent to a unicast destination determined by the request
– A LLDPv2 receiving agent may only have a single extension PDU request pending at a time
– Each extension PDU requests may ask for as many PDUs as desired
– The receiving agent may use multiple extension PDU requests to pace frame reception
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Proposal Continued

– The new LLDPDUv2s will be ignored by LLDPv1
– Since the extension PDUs are unicast, an LLDPv1 will never receive any extension PDUs

– Each extension PDU needs to have a mandatory format:
– Each extension PDU contains the first two mandatory TLVs of a LLDPDUv1 (ChassisID + PortID)
– Each extension PDU contains a new TLV that identifies the PDU 

– A new Request for Extension (RFE) message is sent from receiving peer to load an extension database
– Support multiple peers on a shared media
– Loading an extension database at the receiver LLDPv2 is at the systems discretion
– Extension databases are not multicast and are loaded based on receiver paced RFE message
– The receiver only load an extension database of interest when it determines it’s current database is out of date
– Transmitters only periodically send the 1st PDU
– TTL in 1st PDU relates to all extension PDUs

– Options
– Multiple Extensions databases could be supported
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Alternative LLDPv2 Operation Proposal

NOTE: Send LLDPDUv1 as specified by LLDPv1 when something changes and periodically
Only send extension LLDPDUv2s when explicitly requested by a RFE
Only issue RFE when manifest shows the local copy is out of date
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Example Manifest TLV

– Manifest ID identifies the extension database (for present a single constant chosen by committee (i.e. an CID, 0x1, etc))
– This may be used in the future for determining if a receiver wishes to load the extension database

– Number of extension PDUs indicates the number of valid PDU descriptors in the manifest
– Some implementations may fix the manifest TLV size however load it with a variable number of PDUs

– Each Extension PDU is identified by a:
– PDU number which is implied by the index to the location of the PDU Descriptor
– PDU revision which is updated each time something changes in the PDU (16 bit mod 64K)  
– PDU check sum contains a 16 check. Possible options for this check are:

– the low order 16 bits of a SHA-256 or MD5 hash of the frame
– a CRC16 calculation of the frame

– Implicit encoding of the PDU number provides the smallest possible extension PDU descriptor allowing the largest possible extension 
database size
– Since the PDU number is implicitly encoded inserting or deleting a PDU from the middle of the extension database is a relatively expensive operation.

TLV type 
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(7 bits)
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String length

(9 bits)

Extension
PDU

Revision #
(16 bits)

Extension
Check

(16 bits)

Extension PDU Descriptor
repeat n times (0 <= n <= 125) 
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R
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Extension PDU

– LLDP Extension Ethertype
– Since extensions are not multicast and only delivered on request no new Ethertype is required, though one could be 

used if desired

– Chassis ID + Port ID are mandatory
– Note TTL from 1st PDU should apply and is not needed here

– Extension Description TLV is mandatory
– Identifies this Extension PDU, the PDU revision, and the PDU hash

DA SA
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Extension
Ethertype

Extension
Desc TLV

Optional
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End of 
LLDPDU

TLV
PortID
TLV

ChassisID
TLV

Optional
TLV

Ethernet Header
M M M

LLDP Extension PDU
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Extension Description TLV

– Extension PDU # is the designation number for this PDU 
– The PDU number is in the range from 1 – 126 
– PDU number 0 may be used to include a descriptor TLV in the base database

– Digest/HMAC indicates of the Check Code computation includes a key
– Extension PDU Revision # is the long revision #

– The low 16 bits of this number are used as the revision in the manifest TLV

– Extension PDU Hash
– The check is computed over all TLVs within the PDU including the extension description TLV 
– The Hash may be used as an HMAC if the two devices have already exchanged keys. In this case the TLV 

along with certificates will be hashed.

TLV type 
= DESC
(7 bits)

TLV information
String length

(9 bits)

Extension
PDU

Revision #
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Extension Check Code
SHA-256 Truncated (128 bits)
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Request For Extension PDUs

– Since these are unicast to the source of the base database they would only arrive at an LLDPv1 agent as 
a result of a bug
– Using a new Ethertype will prevent a transmission error for corrupting an LLDPv1 database

– ChasssisID and PortID are mandatory

– Request for Extension PDU TLVs
– Identifies extension PDUs that need to be set by peer

DA SA
LLDP

Extension
Ethertype

RFE TLV
End of 

LLDPDU
TLV

PortID
TLV

ChassisID
TLV

Ethernet Header
M M M

LLDP Extension PDU
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Request Extension PDUs TLV

– Request for extension PDUs
– Multiple RFEs may be used to pace the frames at the receiver by withholding RFEs
– A single RFE may request multiple frames if the receiver has sufficient buffer for them

– Extension LLDPDUs are not multicast, instead they are unicast frames
– The frames are sent to the SA address within the RFE PDU
– On a shared media each individual LLDP Agent must provide independent requests for extension frames
– This allows the individual receivers to pace PDUs at rates that match their ability to handle the reception
– Since LLDPv2 Extension PDUs are unicast they will not interfere with LLDPv1 implementations which will never issue 

RFEs

TLV type 
= DESC
(7 bits)

TLV information
String length

(9 bits)
Request Extension PDUs bitmap

(125 bits)

1 2 3 19

TLV Header TLV information string

R
es Bits
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Datacenter Network Using LSVR
– Most datacenters are configured as 

2-3 layer Clos networks using 
ECMP for distribution over the mesh 
and LAGs/M-LAGs for server 
attachment  

– Typically these networks provide an 
IPv4/IPv6 topology organized with 
ToR and Spine switches within Pods 
(around 8-128 racks)

– Servers at the network edge 
manage virtual and tenant networks 
which are encapsulated into the IP 
packets for transmission over the 
data center

– The orchestrator controls the 
creation of the virtual and tenant 
networks along with coupling to 
services

Leaf Switch
Top-Of-Rack

Spine Switch

Core Switch

ECMP Mesh

ECMP Mesh

LSVR
Datacenter

Network

Server Racks

D
ata C

enter O
rchestration
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Typical Server and Switch Rack Configuration

– Here the Bridge portion of the Top 
Of Rack Switch couples physical 
ports to each server in the rack

– Over the Bridge Ports VLANs are 
distributed to each server

– For each VLAN within the rack an 
IP subnet is assigned

– Each router port in the Top Of Rack 
is coupled to a single VLAN which 
is mapped onto an IP subnet

– Protocols within the switch (in this 
case LSVR) advertise the subnets 
available within the rack to the rest 
of the network

Bridge Router

Top Of Rack (ToR)
Spine R

outers

Router Port
VLAN1, IP1

Router Port
VLAN2, IP2

Router Port
VLAN3, IP3

VLAN 1
VLAN 2
VLAN 3

Rack

LSVR Data Center Network

Data Center Orchestration

Rest APIs
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Server Network Interfaces – Virtual Machines (i.e. VMWare)

– Virtual Station Interface (VSI, defined in IEEE Std 802.1Q-2018): is an internal LAN which connects between a virtual 
NIC and a virtual Bridge Port

– Virtual Access Point (VAP): A logical connection point on the Network Virtualization Edge (NVE) for connecting a 
Tenant System to a virtual network

– DC network is a simple IP underlay network. For scaling L3 encapsulations are supported using “NVE like” 
procedures within the server controlled by Data Center Orchestration
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Server Network Interfaces – Containers (i.e. Docker)

– Container Solutions use Linux Namespaces and Groups to isolate containers
– These solutions provide a variety of network connections, though use an overlay for large scale datacenters 
– DC network is a simple IP network. For scaling L3 encapsulations are supported using “NVE like” procedures within the server 

controlled by Data Center Orchestration
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Discover Protocol Termination Points for LLDPv2

– Currently LLDPv2 is specified to operate at two levels within a Server. These are between the Server and the adjacent Top 
Of Rack switch (S-B) and over an S-Channel to a Virtual Edge (PE-B).

– The IETF L3DL protocol is specified to operate between end system ports (PR-R). LLDPv2 could also take this path by 
choosing a destination MAC that passes through Bridges rather than contained at Bridges

– For the typical case where there are no other Bridges except those embedded in the Server and ToR it is un-necessary to 
pass LLDP through the Bridge layer. Instead, the Router control plane just needs an API to the LLDPv2 database.
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