IEEE YANG

" Some observations

Don Fedyk LabN Consulting L.L.C.
dfedyk@labn.net

Background

* During the last 6 months I've been looking at YANG and following
YANGsters discussions.

* As a newcomer one comment | made was it seemed like IEEE has a
more complicated YANG files than some others that are public.

* The other question | had was about automated programming and
how much detail we put in a YANG model

* Here is some more input on these two points — perhaps not complete
but a couple of insights Yangsters might consider.

Many good reasons do we do YANG

* Replace SNMP

* Give management objects standard names

* Give the objects a standard type and syntax

* Limit the values of an object to valid values, create defaults

* Re-Use standard other Models definitions

* Create dependencies and hierarchies based on component models
* Provide a Model that can be Validated and “Compiled”

* Publish in public

Comparison of YANG models

|IEEE

* Build models to cover the full superset of 802.1 functions
* Follow IEEE bridge component models

* Use YANG conditionals (when .. must) etc. to enable functions for
permutations of the components

e Reference |EEE Specifications

Some others:

* Use a leaner style (Based on MACsec/VLAN Models | have observed)
* Smaller descriptions
* No or minimal references

* Make heavy use of groupings
* Other — there may be a bit more here

Auto programming and initialization

Discussions around YANG:

* Originally a discussion about defaults

* One argument is initialization code is outside of YANG so don’t worry about
YANG defaults

* On the other hand YANG allows defaults and ranges why not use them?

* This led to a discussion about how simple should YANG models be.

* This led to a discussion of being able to compile YANG so why not put
in as much detail as possible.

* Where is YANG compiled? — next charts

YANG compiling to code

There are two areas YANG is being compiled today

1. For the Northbound Interface (Netconf, Restconf etc.)

* In this case - augment the models and produce code for initialization, verification, interface to
management functions

* Highly dependent on the tool chain
* Alternative is to code this manually

* Thisis where, for example, defaults get initialized and configuration is validated before being
committed.

2. For APIs to interface to the North bound interface from external
* YANG Development Kit (YDK) produce class objects and code from YANG.

The common link for these is the YANG modle naming and typing of objects.

Note a Validated YANG model can be used by Netconf — | don’t count this as compiling

YANG - YANG Development Kit - Ecosystem

North Bound
VDK Target System
J
External System CLI Pay\ﬁ\on

WebUI :
YDK Xlate to API Access v Config APIs

Netconf —— Netcont,
etconf or Restconf, DB Operational Data

Restconf or .
IP address, port OpenDaylight,

Optional

L)

OpenDaylight or gNMI [l @elfele=5 Backend code,Libraries
gNMI
Coms
_ YDK Services
Services (CRUD, CODEC, Executor ..)
User
Written - Module.py
APls: Classes ‘

Objects

A more complete
model can be
Python specified, or

YDK Vendor extensions
CH++ se Prototypes pyang Pyang Eacke:f code can
e written

\ Go From YDK code f/

Standard Module.yang

Compllmg (eg confdc)

Names and types are important We are defining the starting point not the whole

Conclusions — For Discussion

* [EEE models support IEEE component model
* This does add dependencies — typically to the bridge model
* We could use more groupings to expose reusable pieces.

* Don’t worry about code generation
e yang validation —a must
e confdcyumal23 etc helps if you can run the model

* Don’t get hung up on defaults — go for functionally and readability.

* If you want code generation
* Use the standard models as a base.
* Augment these models for additional code generation

Thank You, Questions?

Tables Definition

Leaf-list — no defaults

list user-priority-tc {
key "user-priority";
description
"Each entry in the Traffic Class Table is a
traffic class, represented by an integer from
0 through 7 that also comprises
the numeric value of the four most
significant bits of the Port Identifier
component of the SCI for the selected SC";
reference
"IEEE 802.1AE-2018 Clause 10.7.17";
leaf user-priority {
type uint8 {
range "0..7";
}
description
" Deleted for example ";
reference
"IEEE 802.1AE-2018 Clause 10.7.17";

leaf traffic-class {
type uint8 {
range "O0..7";

description
" Deleted for example ";
reference
"IEEE 802.1AE-2018 Clause 10.7.17";

Simpler and functionally the same except for defaults

Container — with defaults

container user-priority-0 ({

description
"Each entry in the Traffic Class Table is a
traffic class, represented by an integer from
0 (default) through 7 that also comprises the
numeric value of the four most significant bits
of the Port Identifier component of the SCI for
the selected SC.";

reference
"IEEE 802.1AE-2018 Clause 10.7.17";

leaf traffic-class {
type uint8 {

range "O0..7";

default 0;

container user-priority-7 {

description
"Each entry in the Traffic Class Table is a
traffic class, represented by an integer from
7 (default) through 7 that also comprises the
numeric value of the four most significant bits
of the Port Identifier component of the SCI for
the selected SC.";

reference
"IEEE 802.1AE-2018 Clause 10.7.17";

leaf traffic-class {
type uint8 {

range "0..7";

}
default 7;

Tables Tree

Leaf-List

+--rw user-priority-tc*
| +--rw user-priority
| +--rw traffic-class?

[user-priority]
uint8
uint8

Container

+--rw user-priority-0
| +-—-rw traffic-class?
+--rw user-priority-1
| +-—-rw traffic-class?
+--rw user-priority-2
| +-—-rw traffic-class?
+--rw user-priority-3
| +--rw traffic-class?
+--rw user-priority-4
| +--rw traffic-class?
+--rw user-priority-5
| +--rw traffic-class?
+--rw user-priority-6
| +--rw traffic-class?
+--rw user-priority-7
| +--rw traffic-class?

uint8

uint8

uint8

uint8

uint8

uint8

uint8

uint8

