P802.1CQ PDU Format

Antonio de la Oliva (Interdigital)
(aoliva@it.uc3m.es)
Roger Marks (EthAirNet Associates)
(roger@ethair.net)

2020-10-26

mailto:aoliva@it.uc3m.es
mailto:roger@ethair.net

Copyright information

Portions of this document (brief quotes from IEEE Std 1722) are
Copyright © IEEE. As a result, per IEEE copyright policy:

* this document is “Previously Published”

 the contributors fulfil the responsibility to immediately inform the
WG Chair that the contribution requires permission from copyright
owner(s) and cannot be presented or included in the draft until that
permission is granted, and offering to assist the WG Chair in
requesting the permission, if possible

* the WG Chair is responsible to use the IEEE-SA Permission Request
and Response Form Templates to request permission
(http://standards.ieee.org/develop/stdsreview.html)

Background

* MAAP is currently specified in IEEE Std 1722
* Intention to move MAAP to P802.1CQ and enhance it

*See “MAAP Integration into P802.1CQ"
* cg-marks-oliva-MAAP
* 2020-10-26

MAAP Compatibility

* Per 1722-2016: The maap _version field identifies the version of MAAP
being used. The current version of MAAP is one (1).

* Forward Compatibility, per 1722-2016:

* All MAAP AVTPDUs received that contain a higher version number and a
message type that is defined in the implemented version of MAAP shall be
interpreted using the implemented version of MAAP, ignoring all unknown
fields. This requires that future versions of MAAP maintain compatibility with
the message types implemented in all previous versions of MAAP.

* All MAAP AVTPDUs received that contain a higher version number and a
message type that is not defined in the implemented version of MAAP shall be
ignored.

* Backward Compatibility, per 1722-2016:

* MAAP AVTPDUs that carry a protocol version lower than the protocol version
implemented by the receiver shall be interpreted according to the protocol
definition corresponding to the protocol version received in the MAAP AVTPDU.

IEEE 1722 AVTPDU common control header

=FE for MAAP 0| The stream_id field is not used or is defined by the format
0 1 2 3
o122 s]af\s|e|7] ool |2]|3]al|ls|s|7]|s|oflola|2]3|a]ls|e]|7]|s]s]o0
00 subtype sv | version format_specific_data control_data_length
04
stream_id

08

12

control_data_payload
(additional header and data - varies by format)

00

Legacy MAAP PDU format

subtype=FE

SV

version=0

message_type | maap_version=1

control_data_length=16

04

08

stream_id=0

12

16

request_start_address

request_count

20

24

conflict_start_address

conflict_count

Legacy MAAP PDU messages

message_type Name maap_version
0 reserved
1 PROBE 1
2 DEFEND 1
3 ANNOUNCE 1
4-16 reserved

Pre-existing MAAP message types, enhanced

message_type Name maap_version
0 reserved
1
1 PROBE
2
1
2 DEFEND
2
1
3 ANNOUNCE

MAAPvV1 devices

e can send MAAPv1 (maap_version 1) messages
e can read MAAPv1 messages

* can read MAAPv2 message type 1, 2, and 3

* All MAAP AVTPDUs received that contain a higher
version number and a message type that is defined in
the implemented version of MAAP shall be
interpreted using the implemented version of MAAP,
ignoring all unknown fields.

MAAPv2 PDU, legacy message types (1,2,3)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 7 8 9 0 2 3 4 5 6 7 8 9
" Y message_type maap_version=
subtype=FE version=0 = - control_data_length=16
=0 2
1,2,3
04
control_word token
08 . .
status sender_ID lifetime

12

request_start_address

16

request_count

20

conflict_start_address

24

conflict_count

New MAAPvV2 message types

message_type

name

maap_version

0

reserved

PROBE

DEFEND

ANNOUNCE

DISCOVER

ADVERTISE

OFFER

REQUEST

ACK

© | 0 | N[O |oOo| >

RELEASE

N (N[N IDNIDNIDNDN

10-16

reserved

MAAPv1 devices

e can send MAAPv1 (maap_version 1) messages
e can read MAAPv1 messages

* can read MAAPv2 message type 1, 2, and 3

* All MAAP AVTPDUs received that contain a higher
version number and a message type that is defined in
the implemented version of MAAP shall be interpreted
using the implemented version of MAAP, ignoring all
unknown fields.

* ignore new MAAPv2 message_types

* All MAAP AVTPDUs received that contain a higher

version number and a message type that is not defined
in the implemented version of MAAP shall be ignored.

* So MAAPv2 can use a new PDU format (but aligned
with AVTPDU control header format).

MAAPvV2 devices

e can send all MAAPv2 messages
e canread all MAAPv1 and MAAPv2 messages

MAAPvV2 PDU, new message types
using AVTPDU common control header

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
00 sv message_type
subtype=FE -0 version=0 = maap_version=2 control_data_length
a 4,5, 6, ...
04
control_word token
08 . .
status sender_ID/Network ID lifetime

12

MAC Address Set supporting multiple formats

Note: MAC Address Set field not drawn to scale

Conclusion

* For existing MAAPv1 message types, specify enhanced MAAPv2
versions

* Can be read and understood by legacy MAAPv1 devices
* New fields are ignored

* For new message types, retains the AVTPDU header format and
subtype and add new fields
* ignored by legacy MAAPvV1 clients.
* enable the new functionality expected from IEEE 802.1CQ
* e.g. server-assigned addresses and new address formats

* New PDU format presented to IEEE 1722 (20 October 2020) with
encouraging positive feedback

Proposed Comment Resolutions

* The approach followed is related (tries to solve at least partially)
comments:

* CID 38: Revise, “update draft per cg-oliva-PDU”

* single PDU type (extension from MAAP)
* all messages carry information on addresses and state

* Update editor’s other proposed comment resolutions accordingly

