
P802.1Qcz D0.5
2nd Task Group Ballot

Editor’s Report and Discussion

Paul Congdon

January 2020

Summary
• Ballot details

– Yes 6 75.00%
– No 2 25.00%
– Voting Yes or No 8 100.00%
– Abs. Time 5 16.67%
– Abs. Expertise 16 53.33%
– Abs. Other 0 0.00%
– Respondents 30
– Voting members 27
– Non-voting 3
– No. of commenters 4 13.33%
– No. of comments 96

• Comments proposed to approve without discussion
– 91->103, 105-110, 112-120, 122-125, 127, 130-153, 155, 157-164, 167, 169-172, 174-176, 178, 182,

184-185

• Priority comments to discuss (with supporting material)
– 166, 168

• Priority comments to discuss
– 104, 111, 126, 128, 154, 177, 179-181, 183, 186

• Lower priority comments to discuss
– 121, 129, 156, 165, 173

• Current proposed disposition posted:
– http://www.ieee802.org/1/files/private/cz-drafts/d0/802-1Qcz-d0-5-pdis-v01.pdf

http://www.ieee802.org/1/files/private/cz-drafts/d0/802-1Qcz-d0-5-pdis-v01.pdf

Comment 168 – TR Algorithm

• The trUpdate() algorithm in the current draft
has a flaw in it.

• Two independent implementations have
found and corrected the issue.

• Details of validation follow

Validating TR algorithm
• Variants of the algorithm were simulated by a C program that

runs LLDP between nodes in the topology:
– paul@ubuntu:~/Code/tr-sim$./tr-sim -h

usage: ./tr-sim

./tr-sim -a num ==> set algorithm number (defaults to 0)

./tr-sim -d num ==> set start-up delay max (random 0 to num)

./tr-sim -f file ==> topology configuration file

./tr-sim -h ==> show help

./tr-sim -m num ==> maximum simulation time in ticks

• Random topologies were generated by an open source python
script (https://github.com/cesarghali/topology-
generator/blob/master/topo-gen.py).

https://github.com/cesarghali/topology-generator/blob/master/topo-gen.py

Test Environment Introduction

Tor
A

Tor
B

Tor
C

Tor
D

Spine
A

SpineB SpineC Spine
D

CoreA CoreB

Test environment is shown in the figure above
Perform Topology Recognition program at all servers and Switches

Legend:
Number: switch level
d: downlink
u: uplink
c: crosslink

• Validate the TR algorithm in the real lab environment. The
topology is a Layer 3 CLOS network
✓ Network
Spine&Core: Huawei CE8850 tomahawk2 switch*6, Port 100G
Tor: Huawei CE6865 trident3 switch*4, Port 100G
✓ Server
ubuntu , Huawei 2288HV3*8, NIC Mellanox CX5*8, 100G

• Perform Topology Recognition(TR) program on all servers
and Switches

• LLDP is turned on all nodes

TorA TorB TorC TorD

SpineA SpineB SpineC SpineD

CoreA CoreB

Server1 Server2

1 1 1 1

2 2 2 2

3 3

u u

d d d d d d d d

d d d d d d d d

d dd d d dd d

u u u u u u

u u u u u u u u

0 000 0 0 0 0
u u u u u u u u

TorA TorB TorC TorD

SpineA SpineB SpineC SpineD

CoreA CoreB

Server1 Server2

255 255

255 255 255 255

255 255

0 000 0 0 0 0
u u u u u u u u

255 255

98.5.3.1 trInit() 98.5.3.3 trUpdate()

Test Cases

• Basic convergence of Layer-3 CLOS
• Disconnect the link between Spine and Tor
• Disconnect multiple links between Spine and Tor
• Add a link between 2 Tors
• Remove a Tor
• Add a Core to all Spines

Note: Detail slides in backup

TorA TorB TorC TorD

SpineA SpineB SpineC SpineD

CoreA CoreB

Validated Algorithm
if (the receiving device is a server)

return;
if (the sending device doesn’t know its level)

return;
if (if the sending and receive device are at the same level)

if (receiving port is already a crosslink)
return;

else
set receiving port to crosslink

if (if the sending level is one greater than the receiving level)
if (receiving port is already an uplink)

return;
else

set receiving port to uplink
if (if the sending level is one less than the receiving level)

if (receiving port is already a downlink)
return;

else
set the receiving port to downlink

If (the sending level is less than the receiving level minus 1) OR (the receiving level is unknown)
set the receiving level to the sending level plus 1
set the receiving port to downlink
set all other ports on the receiving device to unknown

Call trSet() for any ports that had something change locally

Servers are always at 0

Sender isn’t providing any info

Crosslink case

Uplink case

Downlink case

Works because unknown = -1

Comment 166 - Virtualization

• The term level refers to end systems a level 0. With virtualization
technologies end systems may have virtual bridges and levels inside them.
These interfaces can be exposed but it is more normal that they are
tunneled between servers. However the question arises that if a virtual
bridge interface is enables and LLDP is turned on a) would this impact
topology recognition? Also would there be vulnerability to an
implementation that spoofed

VM VM VM

vSwitch

Physical Switch

NIC

Physical Switch is L2

L0 L0

L1

VM VM VM

vSwitch

Physical Switch

NIC

Physical Switch is L1

L0 L0

L1

NIC

Host

L0

Draft Plan

• Produce D0.6 based on Q-base provided by
John Messenger

– Resolved comments

– Add missing YANG

– Add missing PICs

• Run 3rd TG Ballot prior to March Plenary

• Motion to move to WG Ballot in March

Backup

Test Result for Topology Recognition Algorithms

Yongxian Chen
Xiang Yu

IEEE 802.1 Interim meeting
Jan, Geneva, 2020

Test Case – Topology Recognition Procedures

TorA TorB TorC TorD

SpineA SpineB SpineC SpineD

CoreA CoreB

Server1 Server2

1 1 1 1

2 2 2 2

3 3

u u

d d d d d d d d

d d d d d d d d

d dd d d dd d

u u u u u u

u u u u u u u u

0 000 0 0 0 0
u u u u u u u u

Step 1：All Servers and Switches perform trInit()
Servers: If DeviceType is 0,

Set Level to 0
Set PortOrientation to uplink

Switches:If DeviceType is not 0
Set Level to 255
Set PortOrientation to 255

Step 2：All Servers and Switches perform transmission of an LLDPDU to peers

Step 3: If DeviceType is 0, return // Server, do nothing.

Step 4: If the received Level is unknown, return //the peer is not providing additional
information

Step 5.1: On TorA, receive the LLDPDU from Server1, Server2,SpineA and SpineB
If DeviceType is not 0 // Switch, Router

If (the received Level is less than Level – 1) or (Level is unknown)
Set TorA Level to the received Level plus one // 0+1 = 1

So do TorB,C,D

Step 5.2: On SpineA, receive the LLDPDU from TorA, TorB, CoreA and CoreB
If DeviceType is not 0

If (the received Level is less than Level – 1) or (Level is unknown)
Set SpineA Level to the received Level plus one // 1+1 =2

So do SpineB,C,D

Step 5.3: On CoreA, receive the LLDPDU from SpineA, SpineB, SpineC and SpineD
If DeviceType is not 0

If (the received Level is less than Level – 1) or (Level is unknown)
Set CoreA Level to the received Level plus one // 2+1 =3

So do CoreB

Step 6: Levels on those devices are converged. Then set the portOrientation
If the received Level is known and is less than Level - 1

set PortOrientation of the receiving port to downlink
If the received Level is known with a value of Level + 1

set PortOrientation of the receiving port to uplink
If the received Level is known with a value of Level

set PortOrientation of the receiving port to crosslink

Tor
A

Tor
B

Tor
C

Tor
D

Spine
A

SpineB SpineC Spine
D

CoreA CoreB

TorA TorB TorC TorD

SpineA SpineB SpineC SpineD

CoreA CoreB

Server1 Server2

255 255

255 255 255 255

255 255

0 000 0 0 0 0
u u u u u u u u

255 255

Figure2

Figure1

Figure3

Local TR variables
• DeviceType
• Level
• PortOrientation

Legend:
Number: switch level
d: downlink
u: uplink
c: crosslink

Test Case 1 – Disconnect the link between Spine and Tor

TorA TorB TorC TorD

SpineA SpineB SpineC SpineD

CoreA CoreB

Server1 Server2

255
1 1 1

255
2 2 2

3 3

d d d d d d

d d d d d d

d dd d d dd d

u u u u u u

u u u u u u

0 000 0 0 0 0
u u u u u u u u

Step 1：Disconnect the link between SpineA and TorA

Step 2：SpineA and TorA detect the link state change, Spine A and TorA will do trInit().
In SpineA and TorA
If DeviceType is not 0

Set Level to 255
Set PortOrientation to 255

Step 3：All Servers and Switches perform transmission of an LLDPDU to peers

Step 4: If DeviceType is 0, return // Server, do nothing.

Step 5: If the received Level is unknown, return //the peer is not providing additional
information

Step 6.1: On TorA, receive the LLDPDU from Server1, Server2 and SpineB
If DeviceType is not 0 // Switch, Router

If (the received Level is less than Level - 1) or (Level is unknown)
Set TorA Level to the received Level plus one // 0+1 = 1

Step 6.2: On SpineA, receive the LLDPDU from TorB and CoreA, CoreB
If DeviceType is not 0 // Switch, Router

If (the received Level is less than Level -1) or (Level is unknown)
Set SpineA Level to the received Level plus one // 1+1 = 2

Step 7: Levels on those devices are converged. Then set the portOrientation
If the received Level is known and is less than Level - 1

set PortOrientation of the receiving port to downlink
If the received Level is known with a value of Level + 1

set PortOrientation of the receiving port to uplink
If the received Level is known with a value of Level

set PortOrientation of the receiving port to crosslink

Figure1

TorA TorB TorC TorD

SpineA SpineB SpineC SpineD

CoreA CoreB

Server1 Server2

1
1 1 1

2
2 2 2

3 3

d d d d d d

d d d d d d

d dd d d dd d

u u u u u u

u u u u u u

0 000 0 0 0 0
u u u u u u u u

d

u
Figure2

u u

d d

Legend:
Number: switch level
d: downlink
u: uplink
c: crosslink

Test Case 2 – Disconnect the links between Spine and Tor

TorA TorB TorC TorD

SpineA SpineB SpineC SpineD

CoreA CoreB

Server1 Server2

255
1 1

255
2 2 2

3 3

d d d d

d d d d d d

d dd d d dd d

u u u u

u u u u u u

0 000 0 0 0 0
u u u u u u u u

255

Figure1

TorA TorB TorC TorD

SpineA SpineB SpineC SpineD

CoreA CoreB

Server1 Server2

1
1 1

4
2 2 2

3 3

d d d d d d

d d d d d d

d dd d d dd d

u u u u u

u u u u u u

0 000 0 0 0 0
u u u u u u u u

u
Figure2

d d

d d
1

Step 1：Disconnect the links between SpineA and TorA, TorB

Step 2：SpineA and TorA, TorB detect the link state change, Spine A and TorA,TorB will do
trInit().

In SpineA and TorA, TorB
If DeviceType is not 0

Set Level to 255
Set PortOrientation to 255

Step 3：All Servers and Switches perform transmission of an LLDPDU to peers

Step 4: If DeviceType is 0, return // Server, do nothing.

Step 5: If the received Level is unknown, return //the peer is not providing additional
information

Step 6.1: On TorA, receive the LLDPDU from Server1, Server2 and SpineB
If DeviceType is not 0 // Switch, Router

If (the received Level is less than Level - 1) or (Level is unknown)
Set TorA Level to the received Level plus one // 0+1 = 1

So do TorB

Step 6.2: On SpineA, receive the LLDPDU from CoreA and CoreB
If DeviceType is not 0 // Switch, Router

If (the received Level is less than Level -1) or (Level is unknown)
Set SpineA Level to the received Level plus one // 1+1 = 2

Step 7: Levels on those devices are converged. Then set the portOrientation
If the received Level is known and is less than Level - 1

set PortOrientation of the receiving port to downlink
If the received Level is known with a value of Level + 1

set PortOrientation of the receiving port to uplink
If the received Level is known with a value of Level

set PortOrientation of the receiving port to crosslink

Legend:
Number: switch level
d: downlink
u: uplink
c: crosslink

Test Case 3 – Add a link between 2 Tors

TorA TorB TorC TorD

SpineA SpineB SpineC SpineD

CoreA CoreB

Server1 Server2

255 1 1

2
2 2 2

3 3

d d d d

d d d d d d

d dd d d dd d

u u u u

u u u u u u

0 000 0 0 0 0
u u u u u u u u

255

d d Figure1

Step 1：Add a link between TorA and TorB

Step 2：TorA and TorB detect the link state change, TorA and TorB will do trInit().
In TorA and TorB
If DeviceType is not 0

Set Level to 255
Set PortOrientation to 255

Step 3：All Servers and Switches perform transmission of an LLDPDU to peers

Step 4: If DeviceType is 0, return // Server, do nothing.

Step 5: If the received Level is unknown, return //the peer is not providing additional
information

Step 6: On TorA, receive the LLDPDU from Server1, Server2 and SpineB
If DeviceType is not 0 // Switch, Router

If (the received Level is less than Level - 1) or (Level is unknown)
Set TorA Level to the received Level plus one // 0+1 = 1

So do TorB

Step 7: Levels on those devices are converged. Then set the portOrientation
If the received Level is known and is less than Level - 1

set PortOrientation of the receiving port to downlink
If the received Level is known with a value of Level + 1

set PortOrientation of the receiving port to uplink
If the received Level is known with a value of Level

set PortOrientation of the receiving port to crosslink

TorA TorB TorC TorD

SpineA SpineB SpineC SpineD

CoreA CoreB

Server1 Server2

1 1
1

2
2 2 2

3 3

d d d d d d

d d d d d d

d dd d d dd d

u u u u u

u u u u u u

0 000 0 0 0 0
u u u u u u u u

u
Figure2

u u

d d
1

u

d d

c c

u

Legend:
Number: switch level
d: downlink
u: uplink
c: crosslink

Test Case 4 – Remove a Tor

TorA TorB TorC TorD

SpineA SpineB SpineC SpineD

CoreA CoreB

Server1 Server2

1 1

255 255
2 2

3 3

d d d d

d d d d

d dd d d dd d

u u u u

u u u u

00 0 0 0 0
u u u u u u

1

Figure1

TorA TorB TorC TorD

SpineA SpineB SpineC SpineD

CoreA CoreB

Server1 Server2

1 1

2 2
2 2

3 3

d d d d d d

d d d d d

d dd d d dd d

u u u u u

u u u u u u

00 0 0 0 0
u u u u u u

d
Figure2

u u

1

u

u u

d d

Step 1：Disconnect the links between TorA and SpineA, SpineB

Step 2：SpineA and SpineB detect the link state change, SpineA and SpineB will do trInit().
In SpineA and SpineB
If DeviceType is not 0

Set Level to 255
Set PortOrientation to 255

Step 3：All Servers and Switches perform transmission of an LLDPDU to peers

Step 4: If DeviceType is 0, return // Server, do nothing.

Step 5: If the received Level is unknown, return //the peer is not providing additional
information

Step 6: On SpineA, receive the LLDPDU from CoreA and CoreB
If DeviceType is not 0 // Switch, Router

If (the received Level is less than Level -1) or (Level is unknown)
Set SpineA Level to the received Level plus one // 1+1 = 2

So do SpineB

Step 7: Levels on those devices are converged. Then set the portOrientation
If the received Level is known and is less than Level - 1

set PortOrientation of the receiving port to downlink
If the received Level is known with a value of Level + 1

set PortOrientation of the receiving port to uplink
If the received Level is known with a value of Level

set PortOrientation of the receiving port to crosslink

Legend:
Number: switch level
d: downlink
u: uplink
c: crosslink

Test Case 5 – Add a Core to all Spines

TorA TorB TorC TorD

SpineA SpineB SpineC SpineD

CoreA CoreB

Server1 Server2

CoreC

1
1 1 1

2
2

255 255

3 3

d d d d d d

d d

d dd d d dd d

u u u u u u

u u

0 000 0 0 0 0
u u u u u u u u

255

d d

u u

u u

Figure1

TorA TorB TorC TorD

SpineA SpineB SpineC SpineD

CoreA CoreB

Server1 Server2

1 1 1 1

2 2 2 2

3 3

d d d d d d

d d d d d d

d dd d d dd d

u u u u u u

u u u u u u

0 000 0 0 0 0
u u u u u u u u

d

u
Figure2

u u

d d

CoreC

d

d

u

3

Step 1：Add CoreC to SpineC and SpineD

Step 2：SpineA and SpineB detect the link state change, Core C and SpineA, SpineB will do
trInit().

In SpineA, SpineB
If DeviceType is not 0

Set Level to 255
Set PortOrientation to 255

Step 3：All Servers and Switches perform transmission of an LLDPDU to peers

Step 4: If DeviceType is 0, return // Server, do nothing.

Step 5: If the received Level is unknown, return //the peer is not providing additional
information

Step 6.1: On SpineC, receive the LLDPDU from TorC, TorD and CoreA, CoreB, CoreC
If DeviceType is not 0 // Switch, Router

If (the received Level is less than Level -1) or (Level is unknown)
Set SpineC Level to the received Level plus one // 1+1 = 2

So do SpineD

Step 6.2: On CoreC, receive the LLDPDU from SpineC, SpineD
If DeviceType is not 0 // Switch, Router

If (the received Level is less than Level -1) or (Level is unknown)
Set CoreC Level to the received Level plus one // 2+1 = 2

Step 7: Levels on those devices are converged. Then set the portOrientation
If the received Level is known and is less than Level - 1

set PortOrientation of the receiving port to downlink
If the received Level is known with a value of Level + 1

set PortOrientation of the receiving port to uplink
If the received Level is known with a value of Level

set PortOrientation of the receiving port to crosslink
Legend:
Number: switch level
d: downlink
u: uplink
c: crosslink

