P802.1CQ/D0.6
Preview

Roger Marks
(EthAirNet Associates)
P802.1CQ Editor
2021-05-03

Summary

P802.1CQ/D0.5 was reviewed in TG Ballot.
Comment resolution was completed in November.
- Address Blocks were introduced for address claiming
In March, Editor presented “Block Address Registration and Claiming (BARC)”
- cg-marks-BARC-0321-v00.pdf
- address blocks used for registrar-managed addresses as well
- Address Registration and Claiming (ARC)
- address blocks, and also claiming address ranges using MAAP
- presented also to IEEE 1722 Working Group
Main issues raised in March concerned VLAN operation
This contribution previews P802.1CQ/D0.6
- refinements and details since March presentation

- discussion on improved VLAN support

BARC assigns MAC Addresses in Address Blocks

1) Address Blocks (ABs) are sets of local addresses.

2) An AB includes equal-sized unicast and multicast address subblocks.

4) An Address Block Designation (ABD) is a CABA or a RABI.
5) Claimable AB Address (CABA) is claimable by a Claimant without using a Registrar.
 identifies Claimable Address Blocks (CABs) holding Claimable Addresses (CAs)

)
)
3) No BARC address falls within more than one AB.
)
)

- CABA s a multicast MAC address, not in any AB, and used as a DA.
6) RABI
- identifies a Registrable Address Block (RAB) holding Registrable Addresses (RAS)
- RABIs are held in the inventory of a Registrar for assignment
- may be assigned to Claimants
- may be claimed by Registrants
- more detail in a future presentation
7) Alarge set of Temporary Unicast Addresses (TUAS) is specified

- useful for initial discovery by Claimant lacking a unicast address

MAC Address Categorization

determinable |Expanded name I/IG |indicates, by inspection
via inspection:
claimable address, in
: ’ CABA, CABA type, CAB
CA claimable address block U,M (including all other CAs in CAB)
(CAB)
CABA CAB address M |CABA type, CAB
registrable address, in
: ABI, ABI type,
RA registrable address block UM all other RAs in RAB
(RAB)
TUA temporary unicast address U |note: ~6.9E10 to choose among

BARC MAC Address Structure

N11 for registrable addresses, r=1; for claimable addresses, r=0
N10 m is the usual multicast (I/G) bit; 111 is local “SAI” range per IEEE Std 802¢
N9 0000 for claimable addresses
N8 - address block includes subblocks of
N7 - 16/ claimable addresses, or
- 16/ registrable addresses (or aggregated into larger blocks)
N6 - for claimable addresses, i distinguishes
N5 - Claimable Addresses (CAs) from
- CABAs
N6 - identifiers that are also used as addresses
NS
N2 r i jk m
RA 1 ABI Type /G
N1
CA 0 1 CABA Type /G
NO CABA| 0 0 CABA Type 1
12 nibbles TUA 0 0 0 0
per 48-bit
address

CABA and CA, CABA Type 0-3

- 1 CA/subblock

* 16 CAs/subblock

« 256 CA/subblock

CABA Type 0 CABA Type 1 CABA Type 2 CABA Type 3
CABA CAB CABA CAB CABA CAB CABA CAB
0(0|0]|0 110(0 0({0|0f1||0|1]|0]1 0(0{1(0 11110 0(0|1]1 111
11111 11 1111|111 1(1]1]1 11 11111 111
0(0|0]|0 0(0]|0 0(0|0|0|(0Of0O|0O]|0O 0({0|0]|0 0(0]|0 0(0|0]|0 0(0
X8 X8 X8 X8 X8 X8 X8 X8
X7 X7 X7 X7 X7 X7 X7 X7
X6 X6 X6 X6 X6 X6 X6 X6
X5 X5 X5 X5 X5 X5 X5 X5
X4 X4 X4 X4 X4 X4 X4 X4
X3 X3 X3 X3 X3 X3 X3 X3

X2 X2 X2 X2 X2 X2 0 *

X1 X1 X1 X1 0 * 0 *

X0 X0 0 * 0 * 0 *

2 contiguous subblocks per CABA (one unicast, one multicast)
* 6.9E10 Type 0 CABAs + 4.3E9 Type 1 CABAs + 2.7E8 Type 2 CABAs +1.7E7 Type 3 CABAs

* 4096 CAs/subblock

* indicates wildcard (any value)

Claimant of CABAy AB " " (1 T T)
camancioencre ——— Glaiming (simplified
X 4 CABA3
multicast address /
CABA; M T CABA,
""""""""""""""""""""""""" _';;/f:_':_"w
(1) CABA,: DISCOVER state LAN (1) CABA,: DISCOVER state
tg':gf&/f S (2) (unicast) CABA,: CLAIMED state ~ — — — — — — — — _ ™ CABA,
CABA4 / CABA,
CABAg e T CABA,
i N7 S
--------- LAN
; (1) CABA;: DISCOVER state e
tentative | ... CABA
CABA6 1
CABA, / CABA,
CABA, . LT CABA,
ST ;;/fff:_': ----
--------- LAN
(4 CABA; CLAMED state e
CABAg |~ " start listening to CABA, CABA4

Registrar

- Claimant need not be aware of Registrar when initiating a claim.

 Registrar maintains an inventory of RABIs.
— a protocol specifies how Registrars acquire RABIs.
— set of RABs is disjoint from the set of CABs
— AB is either claimable (CAB) or registrable (RAB); not both

- Registrar listens for all messages to a CABA.
—r=0, i=0, m=1, i.e. DA begins 00**-1111
* [IMMRP NumberOfValues field is 13 bits]

- Registrar can respond to a DISCOVER with a proposal of a RABI in
its inventory.

— The proposal can also defend the DISCOVER’s CABA.
— Registrar confirms registration of request.

Operation with Registrars

RABI, / RABI,
Registrar
RABI; ™™ (1)CABA;:DISCOVERstate ™ .. RABI
b —~
."") -
(2) (unicast) PROPOSED RABI, LAN
o (1) CABA,: DISCOVER state
/ (1) CABA,: DISCOVER state ‘
/ .
y ___ (2 (unicast) RABI,: PROPOSED state - — — — — — — — _° ~ O e
T T T B
Claimant _‘: ’’’’’’
______________ (3) (unicast) RABI,: REQUESTED state
RABI, / RABI,
Registrar S RABI,
""""""""""" A ———
LAN)
RABl_I -~ — — — — — — — ——— — — — (4) (unicast) RABI,: REGISTERED state — — — — — — — Registrar

BARC Design

A BARC architecture follows, with details including state machines.
- additional details in Appendix

BARC (Block Address Registration and Claiming) is put into the broader context of
Address Registration and Claiming (ARC), which supports both:

- address blocks (ABs), identified by Address Block Identifiers (ABIs)

- address ranges (ARs), excluding addresses specified by BARC

ARC is the general protocol
- BARC handles ABI Registration and CABA Claiming
- existing MAAP handles AR Claiming

10

ARC Architecture — ARC Claimant

—_——— e —
|ARC
Claimant MMRP ARC Claimant
| AddA Process * Application
| MAD Seek(sa)[ABD] Add(sa)IAR]
' Request(sa,token)[ABD] Drop([AR]
| sBARC Delete()[ABD]
. Outcome(result)[ABD] Outcome(result,AR)
| FYl(status[,value])[ABD]
| v |
| : ABD Claimant AR Claimant
: ABD n
| ; AR
| ABD C state machine
| ABD B B _
< rMAAP(state,AR)! MAAIé’("
A . S event!
| ABD A ‘ 5
state machine ; BARC![ABD]
| MAAP
| spAF%é state machine
| v N - 3
cBARCPDU_out ! cBARCPDU_in
| ' ' :
—_— e e :_ _——_——e——_——_—_——_——_——_—— —_——_—— JR—
BARCPDU(I1,S1,12,S2[token]) BARCPDU(I1,51,12,S2[,token)) AVTPDU(AR)
ingress MAC address filter accepts : Ingress(addlress,status) : :
unicast addresses as adopted for use v : ! V
Claimed AB)
MAAP multicast address for AVTPDUs v LLC

ingress MAC address filter

BARCPDU Summary

field name purpose content
DA dest addresss DA
SA source address
E Ethertype [tbd; could be 22F0 (MAAP Ethertype)]
t subtype [tbd, per 1722 WG; see IEEE 1722 Table 6]
D (Discover), C (Claimed), V (Vacant),
R (Registered), pr (preregistration),
S1 State A (address),
RD, RC, RV, RX, N(null)
11 identifier 48-bit address or ABI
S2 State P (proposed), A (address), N (null)
12 identifier 48-bit address or ABI
T token length tbd
field name purpose content
DA dest addresss 91:E0:F0:00:FF:00 for MAAP multicast
E Ethertype 22F0 (MAAP Ethertype)
t subtype FE per IEEE 1722 Table 6

12

CABA State
goesto D
(Discover)

CABA1 State

claiming
] a CABA

CABA Claim Procedure

decision to claim CABA

CABA State
goes from C to
V (Vacant)
(state machine
destroyed)

DC timer)
starts [""----

> caBAD)
> _

1 B(CABAV

B .
ABD Claimant

[Pou]

P

CABA

uni

CABA:D

uni:A

decision to claim CABA1

goesto D

.- CABA1:D

goes

fromDto C
(Claimed)

CABA1

adopt CABA1 AB
start listening to

DC

[~

CABA1
uni

CABA1:D

uni:A

CABA1

[~

Sa

CABA1:C

O:N

A

Loa]

- EA; could be TUE

~ [ABD:state \45

L

\

Existing CABA Claimant ~

(CABAC)<...

receives
PDU

...-[A could be TUA |

SA; could be
ICA

i

uni [
CABA:C
0:N

not listening

to CABAT1, so
PDU not
received

holding claim CABA;
listening to CABA

CABA
State
isC

(Claimed)

13

ABD Claimant/Registrar Procedure

bggins ABD Claimant , RABI Registrar select RABI with traits (such as AB size)
without decision to claim CABA receves < of received CABA
knowledge [-----.___ PDU to any R
of Registrar [TTTTtee-lll_. CABA CABA RABI is controlled via ABD state machine in
B (CABAD |—] .. Claimant and a ABI state machine in Registrar.
unicast
CABA:D \ﬁ RABLP __..| new RABI State goes toa
CABA State goes uni:A unicast | -
fromCtoV (Vacant) ... RegA v
"""""" l;(CABA:V § CABAC| [
- - Registrar’s
RABI state machine VPP o RABI:P RABI:P unicast
changes from state |----"~ ’ address
V to state P
(Proposed); stores / s Y
RegA RABI,:P S —/ Eroposal times OlEI

RABI:V ,
PP Even after CABA state machine goes to V

I:ro osal times OLB' . state, further proposals can arrive from
prop other Registrars and transition RABI state

machines to P state.

14

RABI State goes

RABI Registration

ABD Claimant

(RABIP

from P to Q
(Request)

decision to register claim to RABI

IRA selected from RABI

o RaBQ)

RABI Registrar

IRA and token T stored inf--------co.o >l IRA

RABI State

adopt AB per RABI

start listening to IRA
unicast address

RABI R State Renew timer reset

T

A(C RABIR)

RABI:P)
RABI State goes
from P to R

(_RABIR) .-~

IRA[T

Reg A

IRA \

RABI:Q IRA

IRA:A [T Reg A .
RABI:R
IRA:A |T

Registrar’s
unicast
address

IRA &
token
stored in
RABI
State

15

ABD Claimant: ABD State Machine

BEGIN ———p»

CREATED

state_initiated=FALSE;

UcT

BARC(C,sa)! Il BARC(D,sa)! Il Delete()!

DISCOVERY (D)

VACANT (V)

if state_initiated Ingress(filter);
if state_initiated Outcome(V);
state_initiated=TRUE;

Seek(sa)! J

state_sa=sa;
sBARC(ABD:D,state_sa:A{ABD,state_sa};
DiscoverTimer=DiscoverLifetime;

(FYl(alert))

v

DiscoverTimer==f

CLAIMED (C)

da=sa;

if da=0 da=ABD;

Ingress(pass);
sBARC(ABD:C,state_sa:A){da,state_sa};
Outcome(C);

ClaimTimer=ClaimLifetime;
ClaimRenewTimer=ClaimRenewLifetime;

BARC(D,sa)!

lCIaimRenewTimer::

BARC(C,sa)!

ClaimTimer==0 || Delete()!

<

——>

LBARC(P,sa)!

EXPIRED (E)

Ingress(filter);

FYl(expired);
ExpireTimer=ExpireLifetime;
Seek(sa)! BARC(P,sa)!

ExpireTimer==

|

e

-——

BARC(R,state_sa,state_token)!

RegRenewTimer==|

> PROPOSED (P)

state_RegA=sa;
FYI(Proposed);
ProposalTimer=ProposalLifetime;

Request(sa,token)! L ProposalTimer==

REQUESTED (Q)

state_sa=sa;

state_token=token;
sBARC(ABD:Q,sa:A,token){state_RegA,sa};
RequestTimer=RequestLifetime;

L RequestTimer==

REGISTERED (R)

Outcome(R);
RegTimer=RegLifetime;
RegRenewTimer=RegRenewLifetime;

RegTimer==0

BARC(V,state_sa,state_token)!
Il Delete()!

J/

16

ARC Claimant Application Process: AddA

START: yes

Request a

Initiate
Adding

PROPOSED
ABD?

no

seeking
AB or AR?

Select (AR)

select sa

select CABA

Request a
PROPOSED
ABD?

result of

Seek(sa)/[CABA]

select sa

AR Claimant
Add(sa)[AR]

(

[CABA]|

result of
Outcome
result,AR)

><{Outcome(result

yes

select IRA from AB as sa
generate token
Request(sa,token)[ABD]

result of

Initiate
Dropping

[adopt addresses from ABD]

configure ingress filter,
and declare with MMRP,
per adopted addresses to
be used

17

AR State
goesto D
(Discovery)

oblivious to
Registrar

new RABI state
machine in

P d | -l
(Proposed) 5 RABIP)

AR Claimant Procedure

Existing AR Claimant
either MAAP or BARC

AVTPDU Probe/v2 is
identical to AVTPDU

Probe/v1 except for
MAAP version number.

AR State V
(Vacant) _f---.. AR Claimant
AR:V
MAAP DA
ARD uni
AR S:atg ------ — | | AvTPDU
goes to Probe/v2
(Discovery)
AR

—

/

AVTPDU
Defend

RABI Registrar

AR:V
AR State
goestoV
(Vacant)
AR State V
(Vacant) AR Claimant
AN
(ARV) [mAAPDA
Tl uni
(ARD)}—]AvTPDU
Probe/v2
AR

\b

state P

AR State remains as D

Device can optionally register the

Proposal via BARC, while the AR

may independently be claimed if
not defended by a MAAP Claimant.

uni
RegA
O:N
RABI.O

AR Claimant and (legacy) MAAP
Claimant respond identically to
AVTPDU Probe/v2.

AR:D

AR Claimant works exactly like MAAP in a

group of mixed AR and MAAP Claimants.

Registrar. If the AVTPDU is a MAAP

just as it does to a Targeted Claim.

select RABI with traits (such as size) of AR

RABI
State
goes to P

MAAP AVTPDUs are received by BARC

Probe/v2, then the Registrar responds

18

BARC Registrar: AVTPDU Processor

AVTPDU

(maap_version,

message_type,
AR)

at MAAP DA

from SA

maap_version message_type

1 | MAAP_Disc(AR,SA)]—)

19

AR State Transition Table

State
VACANT (V) DISCOVERY (D) ACQUIRED (A)
Event
sMAAP(Begin(AR,sa)!)
Add(sa)! DISCOVERY
. Outcome(A,AR)
rMAAP(AR:Defend)! ACQUIRED
_ Outcome(F,AR) Outcome(X)[AR]
rMAAP(AR:Initial)! VACANT VACANT

rMAAP(AR:State!) invokes an event at the state machine when the MAAP state changes to State

sMAAP(Action!) invokes Action! event at MAAP state machine

20

BARC Architecture — Registrar

ClaimCheck Process

CDisc Process | BARC Registrar

A

Application

sBARC

Invite(address,state,da)[RABI]
Try(sa)[RABI]
Delete()[RABI]
Occupied()[RABI]
Deoccupy()[RABI] Outcome(result)[RABI]
+ FYl(status)[RABI]
|

ClaimCheck(State,RABI,SA)

RABI Registar

RABI n
RABI C
RABI B

RABI A
state - <

sBARC

machine . BARCI![RABI] | CDisc(State,ABD,SA)

P

rBARCPDU_in

rBARCPDU_out

BARCPDU(I1,51,12,52[token))

v

A

BARCPDU(I1,S1,12,S2[, token))

AR_Disc(AR,SA)

AVTPDU Processor N

LLC

ingress MAC address filter accepts BARCPDUs addressed to any CABA
and MAAP multicast address for AVTPDUs

A
AVTPDU(AR)
21

RABI, State decision to claim RABI, -
goestoRD {--...... CABA, |&~ ’
(Discoven) | — e -->(RABI;RD }— : [sa]
timer v uni <=
starts RABI,:RD Q\J\‘
- E?ABI:state
uni:A]
/ uni <7-
.l =(RABI:RV Reg A
RABI, State | = _..--" .
goestoRV |..---""" RABI,:RC
(Vacant) Reg A:A
before timer o
expires
decision to claim RABI,
CABA,
...>(RABI;;RD f—]
RABI, | ...--- - uni
(new RABI) RABL.:RD \
State goes 3
to RD uni:A
timer
expires
Ay CABA,
v RABIZRC }—
- uni
RABI, - \
State RABI,:RC
goes to RC uni:A
(Claimed)

RABI, Registrar

Existing RABI, Registrar

EA i_s the null CABE

RABI Claim Procedure

" RABI,:RC)<t

No objection, so no response

May vacate overlapping RABI
states in order to resolve conflict.

RABI, State

is RC (Claimed)

observes an overlap
between RABI, and held

RABI,

A RABI Registrant could be specified. Alternatively, a
Primary RABI Claimant could be configured to hold and
defend many RABIs in reserve, ensuring that RABIs are
not excessively claimed. This would suffice in many

cases.

22

Registrar: RABI State Machine

BEGIN —Pp» CREATED

state_initiated=FALSE;

UcT
> VACANT (V) ¢
if state_initiated Outcome(V);
state_initiated=TRUE;
Occupied()!
P OCCUPIED (0)
Deoccupy()!
L
Try(sa) Invite(address,state,da)!
N > P PROPOSED (P)
DI VERY (RD
SCOo (RD) sBARC(address:state, RABI:P)}{da}
ProposalTimer=ProposalTimerLifetime
sBARC(RABI:RDY{CABA,}
DiscoveryTimer=DiscoveryTimerLifetime BARC(Q,sa,token)! L ProposalTimer==
DiscoveryTimer==0
Delete()!
—P REGISTERED (R) ———————
CLAIMED (RC)
R_sa==sa
. R_token==token
SBARQ(RABI'RQ{QAB.AO} sBARC(RABI:R,R_sa:A token){R_sa,RABI}
ClaimTimer=ClaimLifetime; RegTimer=RegLifetime;
ClaimRenewTimer=ClaimRenewLifetime; RegRenewTimer:RegFienewLifetime'
L ClaimRenewTimer==0
RegRenewTimer== J BARC(Q,sa,token)!
ClaimTimer ==0 Il Delete()! \.
RegTimer==0 Il BARC(V,state_sa,state_token)! Il Delete()!
EXPIRED (E) (y.
Ingress(filter);
FYl(expired);
sBARC(RABI:RV)){CABA}
ExpireTimer=ExpireLifetime;
ExpireTimer== L BARC(P,sa)!
J

23

BARC Registrar Application: ClaimCheck Process

» For RABI state machines in RC State, confirm RABI conflict with I1; if so:
> -take action to resolve the identified existing assignment conflict ——
RX - if deleting RABI, revoke any of its RABIs in Registered state

» For RABI state machines in RC State, check for RABI conflict with 11; if so:
-sBARC(I1:RX){CABA}

3 -take action to resolve the identified existing assignment conflict
RC - if deleting RABI, revoke any of its RABIs in Registered state
else

-Occupied()! to RABI

RV |
State Deoccupy()! to RABI J

ClaimCheck
(State,l1,12)
from
rBARCPDU _in

E » For RABI state machines in RC State, check for RABI conflict with 11; if so:
RD -sBARC(I1:RC){I2}

VLANS

- All address assignments are specific to the VLAN (or VLANS) in which
messaging is communicated and under which the assignment was
completed.

- Usage of any address may need to be limited to the VLAN or VLANs under
which it was obtained.

* Due to the possibility that the same unicast address may be assigned in
different VLANSs, Independent VLAN Learning (IVL) may be needed in
bridges, per IEEE Std 802.1Q Annex F (F.1.2).
- This requirement could be relaxed in some cases
- e.g. when assigned unicast addresses are declared via MMRP
(instead of learning)

* This issue is common to claiming protocols generally.

- Some approaches follow.

25

Claiming with VLAN: IVL | ces,

CABA L CABA
‘ . . I ‘ L. o '
CABA, <
.. A P
B e -
) N
.- IVLLAN T Tl 2| CABA;
& : :
CABA, (independent VLAN learning) CABA,

IEEE Std 802-2014 says “Local MAC addresses need to be unique on a LAN or bridged LAN
unless the bridges support VLANs with independent learning.”

With IVL, each VLAN has an independent forwarding table.
-but IVL is not always possible

BARC claiming on each VLAN is independent

a duplicate address may occur in more than one VLAN; that is not harmful if managed carefully

A claimant with multiple VLANs needs to claim in each VLAN.
Claimed address is usable only in claimed VLAN:
Claimant needs to bind address to VLAN
For convenience, Claimant may claim the same address in each of its VLANs
-Still, requires multiple claim messages and multiple forwarding table entries.
-Device needing many VLANSs should consider an EUI

26

oABA, |- Claiming with VLAN: SVL

CABA,
(3) CABA,:C
(2) CABA,:D CABAg
-, \‘ “o ’—:'
S 4 L? L.
CABA, '
‘~~~ ‘\ "' ,"‘
T . T3 caBA,C
';/‘ (é)CABA1D ‘ ‘~‘
. moasaD SVL LAN e 711 Bamc
CABA, o (shared VLAN learning) M U~ L ol forwarder
<.

With SVL, VLANSs share a forwarding table.

BARC claiming on each VLAN is independent
an address could become a duplicate, existing in more than one VLAN
forwarding table is limited to one entry per address, so duplication is catastrophic.

To prevent duplication, BARC messaging must be carried across VLAN boundaries.
-extra benefit: single address claim is valid over multiple VLANs

To carry claiming messages across VLAN boundaries, a BARC forwarder could be introduced.
-receives BARC messages on all VLANs
-forwards BARC multicast to all VLANSs (retaining originating source address)
-forwards any BARC claim response to the claimant at the originating VLAN
-could result in loops, if a second BARC forwarder was present

* loops could possibly be prevented by labeling the forwarded PDU (e.g. SA) to prevent re-forwarding

-better to use a Registrar instead of a forwarder

27

Registrar with VLAN

Network is configured with Registrar on all active VLANs on which BARC is used.

BARC claim from any VLAN is delivered to Registrar.
-Offer delivered on Claimant’s VLAN

CABA; CABA,
I (1) CABA,:D CABA,
~~~ "" —’::'
CABA, .
... N 4 .-
. <
B | |
1) CABA,:D TR
.—"() 1 SVL or IVL LAN --. “.. :
CABA, o (1) CABA:D- . _ Registar
L (2)CABAO. = = =« - = mmm=cmm s

Registrar ensures that registered address is unique across all (or perhaps only some) of its VLANS.
-SVL or IVL will work

Registrar needs to remember over which VLANs the address was assigned.
-should be retained in State Machine

28




Registrar with Asymmetric VLAN

CABA,
¥

“e._ (2CABAO

(1) CABA,:D T

TA

-"' .Q‘
et .- \ / " 1) CABAD " - _

CABA, '€ ----"" ‘” P
SVLLAN () CABA,:O. . . "

-. Registar

SVL is used for Asymmetric VLAN (IEEE Std 802.1Q Annex F.1.3)

Registrar can assign address to be unique across all VLANs available to the Registrar.

29



Summary

- Claimants operate with or without Registrars.
« Multiple registrars are supported, holding claims of disjoint RABIs.

* The block discretization provides:

— a vast set of addresses to a LAN
— a large set of temporary unicast addresses
— operational efficiency and simplicity
— both unicast and multicast addresses to Claimant
— unicast and multicast subblocks share the same range, except for the 1/G bit
— could be exploited
— devices needing both unicast and multicast addresses need make only one claim

 Could integrate with MMRP to limit propagation and eliminate learning of unicast AB
content.
— MMRP needs to efficiently handle address ranges
— BARP could be specified as alternative MRP application
(e.g. would understand an ABD)

30



