
P802.1CQ/D0.6
Preview

Roger Marks
(EthAirNet Associates)

P802.1CQ Editor
2021-05-03

 1 



Summary
• P802.1CQ/D0.5 was reviewed in TG Ballot.

• Comment resolution was completed in November.

⁃ Address Blocks were introduced for address claiming

• In March, Editor presented “Block Address Registration and Claiming (BARC)” 

⁃ cq-marks-BARC-0321-v00.pdf

⁃ address blocks used for registrar-managed addresses as well

⁃ Address Registration and Claiming (ARC)

⁃ address blocks, and also claiming address ranges using MAAP

⁃ presented also to IEEE 1722 Working Group

• Main issues raised in March concerned VLAN operation

• This contribution previews P802.1CQ/D0.6

⁃ refinements and details since March presentation

⁃ discussion on improved VLAN support

 2 



BARC assigns MAC Addresses in Address Blocks
1) Address Blocks (ABs) are sets of local addresses.

2) An AB includes equal-sized unicast and multicast address subblocks.

3) No BARC address falls within more than one AB.

4) An Address Block Designation (ABD) is a CABA or a RABI.

5) Claimable AB Address (CABA) is claimable by a Claimant without using a Registrar.

• identifies Claimable Address Blocks (CABs) holding Claimable Addresses (CAs)

• CABA is a multicast MAC address, not in any AB, and used as a DA.

6) RABI 

⁃ identifies a Registrable Address Block (RAB) holding Registrable Addresses (RAs)

⁃ RABIs are held in the inventory of a Registrar for assignment

⁃ may be assigned to Claimants

⁃ may be claimed by Registrants

⁃ more detail in a future presentation

7) A large set of Temporary Unicast Addresses (TUAs) is specified

⁃ useful for initial discovery by Claimant lacking a unicast address
 3 



MAC Address Categorization

 4 

indicates, by inspection

CABA, CABA type, CAB
(including all other CAs in CAB)

CABA type, CAB

note: ~6.9E10 to choose amongTUA temporary unicast address

ABI, ABI type, 
all other RAs in RABRA

registrable address, in 
registrable address block
(RAB)

CAB addressCABA

claimable address, in 
claimable address block
(CAB)

CA 

Expanded namedeterminable 
via inspection:

U

U,M

M

U,M

I/G



BARC MAC Address Structure

 5 

N1
N0

N2

N11

N5

N8

N5
N6

N9
N10

N6
N7

for registrable addresses, r=1; for claimable addresses, r=0

m is the usual multicast (I/G) bit; 111 is local “SAI” range per IEEE Std 802c 

12 nibbles
per 48-bit
address

• address block includes subblocks of
⁃ 16jk claimable addresses, or 
⁃ 16jk registrable addresses (or aggregated into larger blocks)

• for claimable addresses, i distinguishes
⁃ Claimable Addresses (CAs) from
⁃ CABAs

⁃ identifiers that are also used as addresses

r j k

1 1 1 m

i

0000 for claimable addresses



CABA and CA, CABA Type 0-3

• 6.9E10 Type 0 CABAs
• 1 CA/subblock

 6 

CABA Type 0 CABA Type 1 CABA Type 2 CABA Type 3
CABA CAB CABA CAB CABA CAB CABA CAB

2 contiguous subblocks per CABA (one unicast, one multicast)

• 4.3E9 Type 1 CABAs
• 16 CAs/subblock

• 2.7E8 Type 2 CABAs
• 256 CA/subblock

• 1.7E7 Type 3 CABAs
• 4096 CAs/subblock

*
*

*
X3

X5
X6

X4

X8
X7

1 *1 1
0

1 11

00 0

0

X3

X5

X1

X6

X0

X4

X2

X8
X7

1 11 1
0

0 00

00 0

0

X3

X5

X1

X6

X0

X4

X2

X8
X7

1 *1 1
0

001

00 0

0

0

X3

X5

X1

X6

X4

X2

X8
X7

1 11 1
0

0 10

00 0

0

*

X3

X5

X1

X6

X4

X2

X8
X7

1 *1 1
0

0 11

00 0

0

0
0

X3

X5
X6

X4

X2

X8
X7

1 11 1
0

1 00

00 0

0

*
*

X3

X5
X6

X4

X2

X8
X7

1 *1 1
0

1 01

00 0

0

0
0

0
X3

X5
X6

X4

X8
X7

1 11 1
0

1 10

00 0

0

* indicates wildcard (any value)



Claiming (simplified)
CABA4

LAN

CABA5

tentative
CABA1

CABA3

CABA2

CABA1

(1) CABA1: DISCOVER state

(2) (unicast) CABA1: CLAIMED state

 7 

CABA4

LAN

CABA5

tentative
CABA6

CABA3

CABA2

CABA1

CABA4

LAN

CABA5

CABA6

CABA3

CABA2

CABA1
(4) CABA6: CLAIMED state
start listening to CABA6

Claimant of CABAX AB 
listens to CABAX  
multicast address

(1) CABA1: DISCOVER state

(1) CABA6: DISCOVER state



• Claimant need not be aware of Registrar when initiating a claim.

• Registrar maintains an inventory of RABIs.
– a protocol specifies how Registrars acquire RABIs.
– set of RABs is disjoint from the set of CABs

– AB is either claimable (CAB) or registrable (RAB); not both

• Registrar listens for all messages to a CABA.
– r=0, i=0, m=1, i.e. DA begins 00**-1111

• [MMRP NumberOfValues field is 13 bits]

• Registrar can respond to a DISCOVER with a proposal of a RABI in 
its inventory.

– The proposal can also defend the DISCOVER’s CABA.
– Registrar confirms registration of request.

 8 

Registrar



Operation with Registrars
RABI4

LAN

Registrar
RABI5

Claimant

RABI3

RABI2

Registrar

(1) CABA1: DISCOVER state

(2) (unicast) RABI1: PROPOSED state

(1) CABA1: DISCOVER state
(2) (unicast) PROPOSED RABI5

RABI4

LAN

Registrar

RABI1

RABI3

Registrar

(1) CABA1: DISCOVER state

RABI2

 9 

(3) (unicast) RABI1: REQUESTED state

(4) (unicast) RABI1: REGISTERED state



BARC Design
• A BARC architecture follows, with details including state machines.

⁃ additional details in Appendix

• BARC (Block Address Registration and Claiming) is put into the broader context of 
Address Registration and Claiming (ARC), which supports both:
⁃ address blocks (ABs), identified by Address Block Identifiers (ABIs)
⁃ address ranges (ARs), excluding addresses specified by BARC

• ARC is the general protocol
⁃ BARC handles ABI Registration and CABA Claiming
⁃ existing MAAP handles AR Claiming

 10 



ARC
Claimant

ARC Architecture – ARC Claimant

ABD Claimant
ABD n

ABD C

ABD B

ABD A
state machine

ARC Claimant
Application

LLC

Seek(sa)[ABD]
Request(sa,token)[ABD]
Delete()[ABD]

Outcome(result)[ABD]
FYI(status[,value])[ABD]

Add(sa)[AR]
Drop()[AR]

Outcome(result,AR)

AR Claimant

 11 

MAD

MMRP

ingress MAC address filter

Ingress(address,status)

AVTPDU(AR)BARCPDU(I1,S1,I2,S2[,token])

AR
state machine

MAAP
state machine

rMAAP(state,AR)!
sMAAP(event!)

cBARCPDU_in

ingress MAC address filter accepts
• unicast addresses as adopted for use
• Claimed AB
• MAAP multicast address for AVTPDUs

AddA Process

cBARCPDU_out

sBARC

BARC![ABD]

sBARC

BARCPDU(I1,S1,I2,S2[,token])



BARCPDU Summary

 12 

I1

E

t

S1

Ethertype

subtype [tbd, per 1722 WG; see IEEE 1722 Table 6]

[tbd; could be 22F0 (MAAP Ethertype)]

State
D (Discover), C (Claimed), V (Vacant),
R (Registered), pr (preregistration),
A (address),
RD, RC, RV, RX, N(null)

identifier 48-bit address or ABI

DA dest addresss DA

SA source address

I2

S2 State P (proposed), A (address), N (null)

identifier 48-bit address or ABI

T token length tbd

field name purpose content

AVTPDU Summary

E

t

Ethertype

subtype FE per IEEE 1722 Table 6

22F0 (MAAP Ethertype)

DA dest addresss 91:E0:F0:00:FF:00 for MAAP multicast

field name purpose content



CABA Claim Procedure

 13 

ABD Claimant Existing CABA Claimant

DC

CABA:D
CABA

uni

uni
sa

CABA:C

CABA:V
CABA:C

CABA:D

holding claim CABA;
listening to CABA

claiming
a CABA

CABA
State 
is C

(Claimed)

CABA State 
goes to D
(Discover)

DA

SA; could be TUADC timer
starts

receives 
PDU

sends
PDU

ABD:state
uni:A

PDU

CABA State 
goes  from C to  

V (Vacant)
(state machine 

destroyed)

decision to claim CABA

0:N

CABA1:D
CABA1

uni

CABA1:C
CABA1

sa

CABA1:D

CABA1:C
start listening to 

CABA1

not listening 
to CABA1, so 

PDU not 
received

CABA1 State 
goes to D

CABA1 State 
goes

from D to C
(Claimed)

uni:A

adopt CABA1 AB

SA; could be 
ICA

decision to claim CABA1

DC

0:N

SA; could be TUA



ABD Claimant/Registrar Procedure

 14 

ABD Claimant RABI Registrar

CABA:D
CABA
unicast

unicast
Reg A

RABI:P

CABA:V
RABI:P

CABA:D

begins 
without 

knowledge 
of Registrar

CABA:C

select RABI with traits (such as AB size) 
of received CABA

Even after CABA state machine goes to V 
state, further proposals can arrive from 
other Registrars and transition RABI state 
machines to P state.

RABI:P

uni:A

decision to claim CABA

CABA State goes  
from C to V (Vacant)

RABI state machine 
changes from state 

V to state P
(Proposed); stores 

RegA

receives 
PDU to any 

CABA RABI is controlled via ABD state machine in 
Claimant and a ABI state machine in Registrar.

new RABI State goes to P

Registrar’s 
unicast 
address

RABI:V
proposal times outRABI1:P

RABI:V

proposal times out



RABI Registration

 15 

ABD Claimant RABI Registrar

Reg A
IRA

RABI:R
RABI:Q

T

IRA

IRA & 
token 

stored in
RABI 
State 

adopt AB per RABI
IRA:A

RABI:Q

RABI State goes 
from P to Q 
(Request)

start listening to IRA
unicast address

IRA selected from RABI
IRA and token T stored in 

RABI State 
T

IRA
T

decision to register claim to RABI

RABI:PRABI:P

RABI State goes 
from P to R

IRA
Reg A

IRA:A T
RABI:R

T

RABI R State Renew timer reset

RABI:R
Registrar’s 

unicast 
address



 16 

BARC(D,sa)!

BARC(C,sa)! || BARC(D,sa)! || Delete()!

DiscoverTimer==0

BARC(R,state_sa,state_token)!

DISCOVERY (D)

state_sa=sa;
sBARC(ABD:D,state_sa:A){ABD,state_sa};
DiscoverTimer=DiscoverLifetime;

CLAIMED (C)

da=sa;
if da=0 da=ABD;
Ingress(pass);
sBARC(ABD:C,state_sa:A){da,state_sa};
Outcome(C);
ClaimTimer=ClaimLifetime;
ClaimRenewTimer=ClaimRenewLifetime;

PROPOSED (P)

state_RegA=sa;
FYI(Proposed);
ProposalTimer=ProposalLifetime;

REQUESTED (Q)

state_sa=sa;
state_token=token;
sBARC(ABD:Q,sa:A,token){state_RegA,sa};
RequestTimer=RequestLifetime;

REGISTERED (R)

Outcome(R);
RegTimer=RegLifetime;
RegRenewTimer=RegRenewLifetime;

VACANT (V)

ABD Claimant: ABD State Machine

if state_initiated Ingress(filter);
if state_initiated Outcome(V);
state_initiated=TRUE;

BARC(P,sa)!

Request(sa,token)!

RegRenewTimer==0

CREATED

UCT

state_initiated=FALSE;

BARC(C,sa)!

FYI(alert)

RegTimer==0

ClaimRenewTimer==0

ClaimTimer==0 || Delete()!

EXPIRED (E)

Ingress(filter);
FYI(expired);
ExpireTimer=ExpireLifetime;

Seek(sa)!

Seek(sa)!

BARC(P,sa)!

ProposalTimer==0

RequestTimer==0

BARC(V,state_sa,state_token)!
|| Delete()!

ExpireTimer==0

BEGIN



ARC Claimant Application Process: AddA

START:
Initiate 
Adding

seeking
AB or AR?

AB

AR

 17 

no

select sa
select CABA

Seek(sa)![CABA]

Cresult of
Outcome(result)

[CABA]

V

END

Seek
again?

no

yes Request a
PROPOSED 

ABD?

no
select IRA from AB as sa

generate token
Request(sa,token)[ABD]

configure ingress filter,
and declare with MMRP,

per adopted addresses to 
be used

END

yes

yes

AR Claimant
Add(sa)[AR]Select (AR)

considering
PROPOSED

ABs,
retry?

yes

no

Drop
any ABD or

AR?

result of
Outcome

(result,AR)

START:
Initiate 

Dropping

no

yes
F

A

result of
Outcome(result)

[ABD]

go to 
START

V

R

adopt addresses from ABD

Request a
PROPOSED 

ABD?

select sa



AR Claimant Procedure

 18 

AR Claimant RABI Registrar

AR:D

uni
RegA

RABI:P

RABI:O

AR State 
goes to D

(Discovery)

RABI 
State 

goes to P

0:N

select RABI with traits (such as size) of AR

RABI:P

new RABI state 
machine in 

state P
(Proposed)

AR:V
oblivious to 
Registrar

AR State remains as D

AR State V
(Vacant)

MAAP DA

Existing AR Claimant
either MAAP or BARC

AR Claimant

AVTPDU
Defend

AR:D

AR:D

AR Claimant works exactly like MAAP in a 
group of mixed AR and MAAP Claimants.

MAAP AVTPDUs are received by BARC 
Registrar. If the AVTPDU is a MAAP 
Probe/v2, then the Registrar responds 
just as it does to a Targeted Claim. uni

AVTPDU
Probe/v2

AR

AR:V

AR State V
(Vacant)

AR State 
goes to D

(Discovery)

MAAP DA
uni

AVTPDU
Probe/v2

AR

AVTPDU Probe/v2 is 
identical to AVTPDU 
Probe/v1 except for 
MAAP version number. 

AR Claimant and (legacy) MAAP 
Claimant respond identically to 
AVTPDU Probe/v2. 

AR:V
AR State 
goes to V
(Vacant)

Device can optionally register the 
Proposal via BARC, while the AR 
may independently be claimed if 

not defended by a MAAP Claimant.



 19 

BARC Registrar: AVTPDU Processor 

ENDmaap_version

AVTPDU
(maap_version,
message_type,

AR)
at MAAP DA

from SA

MAAP_Disc(AR,SA)

not 2

message_type
2 1

not 1



Event

AR State Transition Table

VACANT (V) DISCOVERY (D)

State

 20 

Add(sa)! sMAAP(Begin(AR,sa)!)
DISCOVERY

rMAAP(AR:Defend)! Outcome(A,AR)
ACQUIRED

ACQUIRED (A)

rMAAP(AR:Initial)! Outcome(F,AR)
VACANT

Outcome(X)[AR]
VACANT

rMAAP(AR:State!) invokes an event at the state machine when the MAAP state changes to State

sMAAP(Action!) invokes Action! event at MAAP state machine



BARC
Registrar

ingress MAC address filter accepts BARCPDUs addressed to any CABA
and MAAP multicast address for AVTPDUs

BARC Architecture – Registrar

 21 

BARC Architecture – Registrar

RABI Registar

RABI n

RABI C

RABI B

RABI A
state 

machine

BARC Registrar
Application

Invite(address,state,da)[RABI]
Try(sa)[RABI]
Delete()[RABI]
Occupied()[RABI]
Deoccupy()[RABI]

AR_Disc(AR,SA)

LLC

Outcome(result)[RABI]
FYI(status)[RABI]

AVTPDU(AR)

rBARCPDU_in

BARC![RABI] CDisc(State,ABD,SA)

AVTPDU Processor

BARCPDU(I1,S1,I2,S2[,token])

rBARCPDU_out

BARCPDU(I1,S1,I2,S2[,token])

sBARC

CDisc Process
ClaimCheck Process

ClaimCheck(State,RABI,SA)

sBARC



RABI Claim Procedure

 22 

RABI1 Registrar Existing RABI1 Registrar

RABI1:RD
CABA0

uni

uni
Reg ARABI1:RV

RABI3:RD
uni

RABI3:RC
CABA0

uni

RABI1:RD

RABI3:RD

RABI3:RC

claiming
RABI0

RABI2 State 
is RC (Claimed)RABI0 State 

goes to RD
(Discover) SA

timer
starts

sends
PDURABI1 State 

goes to RV
(Vacant)

before timer 
expires

timer
expires

No objection, so no response

May vacate overlapping RABI 
states in order to resolve conflict.RABI3

(new RABI)
 State goes 

to RD

RABI3
State 

goes to RC
(Claimed)

A RABI Registrant could be specified. Alternatively, a 
Primary RABI Claimant could be configured to hold and 
defend many RABIs in reserve, ensuring that RABIs are 
not excessively claimed. This would suffice in many 
cases.

decision to claim RABI1
RABI2:RC

decision to claim RABI3
CABA0

DA is the null CABA

RABI:state

observes an overlap 
between RABI1 and held 

RABI2

RABI1:RC

uni:A

uni:A

uni:A

Reg A:A



 23 

PROPOSED (P)

sBARC(address:state,RABI:P){da}
ProposalTimer=ProposalTimerLifetime

REGISTERED (R)

R_sa==sa
R_token==token
sBARC(RABI:R,R_sa:A,token){R_sa,RABI}
RegTimer=RegLifetime;
RegRenewTimer=RegRenewLifetime;

VACANT (V)

Registrar: RABI State Machine

if state_initiated Outcome(V);
state_initiated=TRUE;

Invite(address,state,da)!

BARC(Q,sa,token)!

RegRenewTimer==0

CREATED

UCT

state_initiated=FALSE;

RegTimer==0 || BARC(V,state_sa,state_token)! || Delete()!
EXPIRED (E)

Ingress(filter);
FYI(expired);
sBARC(RABI:RV)){CABA0}
ExpireTimer=ExpireLifetime;

BARC(P,sa)!

ProposalTimer==0

CLAIMED (RC)

sBARC(RABI:RC){CABA0}
ClaimTimer=ClaimLifetime;
ClaimRenewTimer=ClaimRenewLifetime;

BARC(Q,sa,token)!

ExpireTimer==0

DISCOVERY (RD)

sBARC(RABI:RD){CABA0}
DiscoveryTimer=DiscoveryTimerLifetime

Try(sa)

OCCUPIED (O)

Delete()!
DiscoveryTimer==0

ClaimRenewTimer==0

ClaimTimer ==0  || Delete()!

BEGIN

Occupied()! 

Deoccupy()! 



 24 

BARC Registrar Application: ClaimCheck Process

ClaimCheck
(State,I1,I2)

from 
rBARCPDU_in 

ENDState

RD
• For RABI state machines in RC State, check for RABI conflict with I1; if so:

-sBARC(I1:RC){I2}

Deoccupy()! to RABI
RV

RC

• For RABI state machines in RC State, check for RABI conflict with I1; if so:
-sBARC(I1:RX){CABA0}
-take action to resolve the identified existing assignment conflict

- if deleting RABI, revoke any of its RABIs in Registered state
else

-Occupied()! to RABI

RX

• For RABI state machines in RC State, confirm RABI conflict with I1; if so:
-take action to resolve the identified existing assignment conflict

- if deleting RABI, revoke any of its RABIs in Registered state



VLANs

 25 

• All address assignments are specific to the VLAN (or VLANs) in which 
messaging is communicated and under which the assignment was 
completed.

• Usage of any address may need to be limited to the VLAN or VLANs under 
which it was obtained.

• Due to the possibility that the same unicast address may be assigned in 
different VLANs, Independent VLAN Learning (IVL) may be needed in 
bridges, per IEEE Std 802.1Q Annex F (F.1.2).
⁃ This requirement could be relaxed in some cases
⁃ e.g. when assigned unicast addresses are declared via MMRP 

(instead of learning)

• This issue is common to claiming protocols generally.

• Some approaches follow.

• All address assignments are specific to the VLAN (or VLANs) in which 
messaging is communicated and under which the assignment was 
completed.

• Usage of any address may need to be limited to the VLAN or VLANs under 
which it was obtained.

• Due to the possibility that the same unicast address may be assigned in 
different VLANs, Independent VLAN Learning (IVL) may be needed in 
bridges, per IEEE Std 802.1Q Annex F (F.1.2).
⁃ This requirement could be relaxed in some cases
⁃ e.g. when assigned unicast addresses are declared via MMRP 

(instead of learning)

• This issue is common to claiming protocols generally.

• Some approaches follow.



Claiming with VLAN: IVL
CABA1

IVL LAN
(independent VLAN learning)

CABA4

CABA1

CABA3

CABA6

CABA1
CABA2

 26 

IEEE Std 802-2014 says “Local MAC addresses need to be unique on a LAN or bridged LAN
unless the bridges support VLANs with independent learning.”

With IVL, each VLAN has an independent forwarding table.
-but IVL is not always possible

BARC claiming on each VLAN is independent
a duplicate address may occur in more than one VLAN; that is not harmful if managed carefully

A claimant with multiple VLANs needs to claim in each VLAN.
Claimed address is usable only in claimed VLAN:

Claimant needs to bind address to VLAN
For convenience, Claimant may claim the same address in each of its VLANs

-Still, requires multiple claim messages and multiple forwarding table entries.
-Device needing many VLANs should consider an EUI



Claiming with VLAN: SVLCABA1

SVL LAN
(shared VLAN learning)

CABA4

CABA1

CABA3

CABA6

BARC
forwarder

 27 

(1) CABA1:D
(1) CABA1:D

(2) CABA1:D    

(2) CABA1:D

(3) CABA1:C

(3) CABA1:C

(4) CABA1:C
With SVL, VLANs share a forwarding table.

BARC claiming on each VLAN is independent
an address could become a duplicate, existing in more than one VLAN
forwarding table is limited to one entry per address, so duplication is catastrophic.

To prevent duplication, BARC messaging must be carried across VLAN boundaries.
-extra benefit: single address claim is valid over multiple VLANs

To carry claiming messages across VLAN boundaries, a BARC forwarder could be introduced.
-receives BARC messages on all VLANs
-forwards BARC multicast to all VLANs (retaining originating source address)
-forwards any BARC claim response to the claimant at the originating VLAN
-could result in loops, if a second BARC forwarder was present

• loops could possibly be prevented by labeling the forwarded PDU (e.g. SA) to prevent re-forwarding
-better to use a Registrar instead of a forwarder



Registrar with VLAN
CABA1

SVL or IVL LAN

CABA4

CABA1

CABA3

CABA6

Registar

 28 

(1) CABA1:D

(1) CABA1:D

(1) CABA1:D

(2) CABA1:O

Network is configured with Registrar on all active VLANs on which BARC is used.

BARC claim from any VLAN is delivered to Registrar.
-Offer delivered on Claimant’s VLAN

Registrar ensures that registered address is unique across all (or perhaps only some) of its VLANs.
-SVL or IVL will work

Registrar needs to remember over which VLANs the address was assigned.
-should be retained in State Machine



Registrar with Asymmetric VLAN
CABA1

SVL LAN
CABA4

Registar

 29 

SVL is used for Asymmetric VLAN (IEEE Std 802.1Q Annex F.1.3)

Registrar can assign address to be unique across all VLANs available to the Registrar.

(1) CABA1:D

(1) CABA1:D

(2) CABA1:O

(2) CABA1:O



Summary

 30 

• Claimants operate with or without Registrars.

• Multiple registrars are supported, holding claims of disjoint RABIs.

• The block discretization provides:
– a vast set of addresses to a LAN
– a large set of temporary unicast addresses
– operational efficiency and simplicity
– both unicast and multicast addresses to Claimant

– unicast and multicast subblocks share the same range, except for the I/G bit
– could be exploited

– devices needing both unicast and multicast addresses need make only one claim

• Could integrate with MMRP to limit propagation and eliminate learning of unicast AB 
content.

– MMRP needs to efficiently handle address ranges 
– BARP could be specified as alternative MRP application

(e.g. would understand an ABD)


