
Alon Regev AUG 11, 2021

Email: alon.regev@keysight.com

2

Cycle Timer
state machine

List Config
state machine

• In the List Config state machine (802.1Q-2018 clause 8.6.9.3), upon a ConfigChange (when GateEnabled is TRUE) ConfigPending is set to TRUE in the
CONFIG_PENDING state, remains TRUE in the UPDATE_CONFIG state machine and is then set to FALSE in the CONFIG_IDLE state.

• Also in the List Config stat machine, in the UPDATE_CONFIG state, NewConfigCT is set to TRUE. NewConfigCT being TRUE triggers the Cycle Timer state machine
(802.1Q-2018 clause 8.6.9.1) to transition to the CYCLE_IDLE state, which then transitions to the SET_CYCLE_START_TIME (UCT). In the
SET_CYCLE_START_TIME state, the SetCycleStartTime() procedure determines which rules should be taken.

• Unfortunately, after the List Config state machine changes to the UPDATE_CONFIG state, it is not clear if ConfigPending will be set to FALSE before or after the
Cycle Timer state machine gets to the SET_CYCLE_START_TIME state, hence the race condition.

3

• This race condition only makes a difference to the outcome of the SetCycleStartTime() calculation when:
• A dynamic schedule change is done (applying a new gate control list while another one is already running)

• In the List Config state machine, the transition from CONFIG_PENDING to UPDATE_CONFIG occurs when (ConfigChangeTime
< CurrentTime)
• the problem doesn’t occur if the transition occurs when ConfigChangeTime is equal to CurrentTime

• This is the behavior of the SetCycleStart() calculation after the List Config state machine under the two cases:
• if the Cycle Timer state machine is run before ConfigPending is set to FALSE:

• ConfigPending is TRUE

• “ConfigChangeTime <= (CurrentTime + OperCy-cleTime + OperCycleTimeExtension)” must be true as ConfigChangeTime <=
CurrentTime
• this was required in the transition from the CONFIG_PENDING to the UPDATE_CONFIG in the List Config state machine

• Therefore, the SetCycleStart() will use rule “d)” and set CycleStartTime = ConfigChangeTime

• if the Cycle Timer state machine is run after ConfigPending is set to FALSE:
• ConfigPending is FALSE

• At this point, CurrentTime >= ConfigChangeTime >= OperBaseTime (ConfigChangeTIme is set >= AdminBaseTime in the
SetConfigChangeTime() function; OperBaseTime was set AdminBaseTime in the UPDATEC_CONFIG state of the List Config state
machine; and CurrentTime >= ConfigChangeTime as this was required in the transition from the CONFIG_PENDING to the
UPDATE_CONFIG in the List Config state machine)

• The question is whether CurrentTime > OperBaseTime or CurrentTime == OperBaseTime:
• If (ConfigPending = FALSE, and OperBaseTime >= CurrentTime)

• CycleStartTime = OperBaseTime = AdminBaseTime

• If (ConfigPending = FALSE, and OperBaseTime < CurrentTime)
• CycleStartTime = (OperBaseTime + N*OperCycleTime), where N is the smallest integer for which CycleStartTime >= CurrentTime

• If CurrentTime > OperBaseTime (which will occur if the transition from CONFIG_PENDING to UPDATE_CONFIG in the List Config state
machine occurs when ConfigChangeTime < CurrentTime) then the cycle will only start N*OperCycleTime after OperBaseTime essentially
not starting a cycle (and not running any gates) for N*OperCycleTime

4

• Currently, configPending is reset to FALSE without knowing if the
new config has been applied
• But the information is available in another variable: NewConfigCT passed

by the List Config state machine to the Cycle Timer state machine

• Instead of making changes to multiple state machines, a change to
only the Cycle Timer state machine is proposed, where:
• We track whether the state machine is triggered by NewConfigCT using a

new variable (CycleNewConfig)

• the SetCycleStartTime() procedure is modified to use
(configPending || CycleNewConfig) avoiding the race condition

• Details in the following slides
• All references are to

https://www.ieee802.org/1/files/private/q-rev-drafts/d1/802-1Q-rev-d1-0.pdf

UCT

CycleStartTime <= CurrentTime

CycleStart = TRUE;

START_CYCLE

SetCycleStartTime();
CycleNewConfig = FALSE;

SET_CYCLE_START_TIME

CycleStart = FALSE;
NewConfigCT = FALSE;

CYCLE_IDLE

UCT

BEGIN || !GateEnabled

NewConfigCT = FALSE;
CycleNewConfig = FALSE;

CYCLE_INIT

NewConfigCT

NewConfigCT = FALSE;
CycleNewConfig = TRUE;

CYCLE_NEW_CONFIG

UCT UCT

5

• In Clause 8.6.9.1 , Figure 8-19 (Cycle Timer State Machine):
• Remove the global transition from “BEGIN || !GateEnabled || NewConfigCT” to CYCLE_IDLE
• Add a new state named “CYCLE_INIT”

• This state will contain the “NewConfigCT = FALSE;” and “CycleNewConfig = FALSE;”

• Add a global transition from “BEGIN || !GateEnabled” to the new CYCLE_INIT state
• Add a new state named “CYCLE_NEW_CONFIG”

• This state will contain the “NewConfigCT = FALSE;” and “CycleNewConfig = TRUE;”

• Add a global transition from “NewConfigCT” to the new CYCLE_INIT state
• Add an UCT transition from the CYCLE_INIT state to the CYCLE_IDLE state
• Add an UCT transition from the CYCLE_NEW_CONFIG state to the CYCLE_IDLE state
• Remove the line “NewConfigCT = FALSE;” from the CYCLE_IDLE state
• In the SET_CYCLE_START_TIME, after “SetCycleStartTime()” add a new line

containing “CycleNewConfig = FALSE;”

UCT

BEGIN || !GateEnabled || NewConfigCT

CycleStartTime <= CurrentTime

CycleStart = TRUE;

START_CYCLE

SetCycleStartTime();

SET_CYCLE_START_TIME

CycleStart = FALSE;
NewConfigCT = FALSE;

CYCLE_IDLE

UCT

UCT

CycleStartTime <= CurrentTime

CycleStart = TRUE;

START_CYCLE

SetCycleStartTime();
CycleNewConfig = FALSE;

SET_CYCLE_START_TIME

CycleStart = FALSE;
NewConfigCT = FALSE;

CYCLE_IDLE

UCT

BEGIN || !GateEnabled

NewConfigCT = FALSE;
CycleNewConfig = FALSE;

CYCLE_INIT

NewConfigCT

NewConfigCT = FALSE;
CycleNewConfig = TRUE;

CYCLE_NEW_CONFIG

UCT UCT

6

• In Clause 8.6.9.1.1 (SetCycleStartTime() procedure)
• Replace each occurrence of “ConfigPending = FALSE” with “(ConfigPending = FALSE) and (CycleNewConfig =

FALSE)”

• Replace each occurrence of “ConfigPending = TRUE” with “((ConfigPending = TRUE) or (CycleNewConfig = TRUE))”

a) If:

ConfigPending = FALSE, and

OperBaseTime >= CurrentTime

(i.e., OperBaseTime specifies the current time or a future time)

Then:

CycleStartTime = OperBaseTime.

b) If:

ConfigPending = FALSE, and

OperBaseTime < CurrentTime

(i.e., OperBaseTime specifies a time in the past)

Then:

CycleStartTime = (OperBaseTime + N*OperCycleTime)

where N is the smallest integer for which the relation:

CycleStartTime >= CurrentTime

would be TRUE.

c) If:

ConfigPending = TRUE, and

ConfigChangeTime > (CurrentTime + OperCycleTime + OperCycleTimeExtension)

Then:

CycleStartTime = (OperBaseTime + N*OperCycleTime)

where N is the smallest integer for which the relation:

CycleStartTime >= CurrentTime

would be TRUE.

d) If:

ConfigPending = TRUE, and

ConfigChangeTime <= (CurrentTime + OperCycleTime + OperCycleTimeExtension)

Then:

CycleStartTime = ConfigChangeTime

a) If:

(ConfigPending = FALSE) and (CycleNewConfig = FALSE), and

OperBaseTime >= CurrentTime

(i.e., OperBaseTime specifies the current time or a future time)

Then:

CycleStartTime = OperBaseTime.

a) If:

(ConfigPending = FALSE) and (CycleNewConfig = FALSE), and

OperBaseTime < CurrentTime

(i.e., OperBaseTime specifies a time in the past)

Then:

CycleStartTime = (OperBaseTime + N*OperCycleTime)

where N is the smallest integer for which the relation:

CycleStartTime >= CurrentTime

would be TRUE.

a) If:

((ConfigPending = TRUE) or (CycleNewConfig = TRUE)), and

ConfigChangeTime > (CurrentTime + OperCycleTime + OperCycleTimeExtension)

Then:

CycleStartTime = (OperBaseTime + N*OperCycleTime)

where N is the smallest integer for which the relation:

CycleStartTime >= CurrentTime

would be TRUE.

a) If:

((ConfigPending = TRUE) or (CycleNewConfig = TRUE)), and

ConfigChangeTime <= (CurrentTime + OperCycleTime + OperCycleTimeExtension)

Then:

CycleStartTime = ConfigChangeTime

