
Alon Regev SEPT 21, 2021

Email: alon.regev@keysight.com

2

Cycle Timer
state machine

List Config
state machine

• In the List Config state machine (802.1Q-2018 clause 8.6.9.3), upon a ConfigChange (when GateEnabled is TRUE) ConfigPending is set to TRUE in the
CONFIG_PENDING state, remains TRUE in the UPDATE_CONFIG state machine and is then set to FALSE in the CONFIG_IDLE state.

• Also in the List Config stat machine, in the UPDATE_CONFIG state, NewConfigCT is set to TRUE. NewConfigCT being TRUE triggers the Cycle Timer state machine
(802.1Q-2018 clause 8.6.9.1) to transition to the CYCLE_IDLE state, which then transitions to the SET_CYCLE_START_TIME (UCT). In the
SET_CYCLE_START_TIME state, the SetCycleStartTime() procedure determines which rules should be taken.

• Unfortunately, after the List Config state machine changes to the UPDATE_CONFIG state, it is not clear if ConfigPending will be set to FALSE before or after the
Cycle Timer state machine gets to the SET_CYCLE_START_TIME state, hence the race condition.

3

• This race condition only makes a difference to the outcome of the SetCycleStartTime() calculation when:
• A dynamic schedule change is done (applying a new gate control list while another one is already running)

• In the List Config state machine, the transition from CONFIG_PENDING to UPDATE_CONFIG occurs when (ConfigChangeTime
< CurrentTime)
• the problem doesn’t occur if the transition occurs when ConfigChangeTime is equal to CurrentTime

• This is the behavior of the SetCycleStart() calculation after the List Config state machine under the two cases:
• if the Cycle Timer state machine is run before ConfigPending is set to FALSE:

• ConfigPending is TRUE

• “ConfigChangeTime <= (CurrentTime + OperCy-cleTime + OperCycleTimeExtension)” must be true as ConfigChangeTime <=
CurrentTime
• this was required in the transition from the CONFIG_PENDING to the UPDATE_CONFIG in the List Config state machine

• Therefore, the SetCycleStart() will use rule “d)” and set CycleStartTime = ConfigChangeTime

• if the Cycle Timer state machine is run after ConfigPending is set to FALSE:
• ConfigPending is FALSE

• At this point, CurrentTime >= ConfigChangeTime >= OperBaseTime (ConfigChangeTIme is set >= AdminBaseTime in the
SetConfigChangeTime() function; OperBaseTime was set AdminBaseTime in the UPDATEC_CONFIG state of the List Config state
machine; and CurrentTime >= ConfigChangeTime as this was required in the transition from the CONFIG_PENDING to the
UPDATE_CONFIG in the List Config state machine)

• The question is whether CurrentTime > OperBaseTime or CurrentTime == OperBaseTime:
• If (ConfigPending = FALSE, and OperBaseTime >= CurrentTime)

• CycleStartTime = OperBaseTime = AdminBaseTime

• If (ConfigPending = FALSE, and OperBaseTime < CurrentTime)
• CycleStartTime = (OperBaseTime + N*OperCycleTime), where N is the smallest integer for which CycleStartTime >= CurrentTime

• If CurrentTime > OperBaseTime (which will occur if the transition from CONFIG_PENDING to UPDATE_CONFIG in the List Config state
machine occurs when ConfigChangeTime < CurrentTime) then the cycle will only start N*OperCycleTime after OperBaseTime essentially
not starting a cycle (and not running any gates) for N*OperCycleTime

4

• Currently, configPending is reset to FALSE without knowing if the new config has been applied

• This solution leaves the setting of configPending in the List Config state machine but moves
the reset of configPending from the List Config state machine to the Cycle Timer state
machine.

• This involves changes to fig 8-18, 8-19, and 8-21 as well as text in clause 8.6.9.1.1.

• Details follow in slides 7-10
• All references are to

https://www.ieee802.org/1/files/private/q-rev-drafts/d1/802-1Q-rev-d1-0.pdf

5

• Currently, configPending is reset to FALSE without knowing if the
new config has been applied
• But the information is available in another variable: NewConfigCT passed

by the List Config state machine to the Cycle Timer state machine

• Instead of making changes to multiple state machines, a change to
only the Cycle Timer state machine is proposed, where:
• We track whether the state machine is triggered by NewConfigCT using a

new variable (CycleNewConfig)

• the SetCycleStartTime() procedure is modified to use
(configPending || CycleNewConfig) avoiding the race condition

• Details are provided in slides 11-12 below
• All references are to

https://www.ieee802.org/1/files/private/q-rev-drafts/d1/802-1Q-rev-d1-0.pdf

UCT

CycleStartTime <= CurrentTime

CycleStart = TRUE;

START_CYCLE

SetCycleStartTime();
CycleNewConfig = FALSE;

SET_CYCLE_START_TIME

CycleStart = FALSE;
NewConfigCT = FALSE;

CYCLE_IDLE

UCT

BEGIN || !GateEnabled

NewConfigCT = FALSE;
CycleNewConfig = FALSE;

CYCLE_INIT

NewConfigCT

NewConfigCT = FALSE;
CycleNewConfig = TRUE;

CYCLE_NEW_CONFIG

UCT UCT

6

• In the List Config State Machine, change the transition from
CONFIG_PENDING to UPDATE_CONFIG to only occur when
ConfigChangeTime = CurrentTime
• As SetConfigChangeTime always sets ConfigChangeTime to either

the current time or a future time, we can assume that we can
transition states exactly at the ConfigChangeTime (when
ConfigChangeTime = CurrentTime).

• This is the simplest change and has no other slides or backup
materials.

• This doesn’t avoid the race condition, but I believe that it leads to
both paths in the race condition leading to the same result.

ConfigChange && GateEnabled

ConfigPending = FALSE;

CONFIG_IDLE

OperBaseTime = AdminBaseTime;
OperControlList = AdminControlList;

OperControlListLength = AdminControlListLength;
OperCycleTime = AdminCycleTime;

OperCycleTimeExtension = AdminCycleTimeExtension;
NewConfigCT = TRUE;

UPDATE_CONFIG

BEGIN || !GateEnabled
UCT

ConfigChange = FALSE;
SetConfigChangeTime();
ConfigPending = TRUE;

CONFIG_PENDING

ConfigChangeTime <= CurrentTime
ConfigChangeTime = CurrentTime

7

• In Clause 8.6.9.3 , Figure 8-18 (Scheduled traffic state machines—overview and relationships):
• On the arrow with the text “ConfigPending, ConfigChangeTime”, change the text to “ConfigPending” and

change the arrow shape to be one with the outline only (no fill).

• Add an arrow underneath the ConfigPendingArrow starting at the “LIST CONFIG” box and ending at the
“CYCLE TIMER” box with the text “ConfigChangeTime”, no arrow at the LIST CONFIG SIDE, and a filled in
arrow at the CYCLE TIMER side.

LIST EXECUTE (PER PORT)

LIST CONFIG
(PER PORT)

CYCLE TIMER
(PER PORT)

ConfigChange

AdminBaseTime,
AdminControlList,
AdminControlListLength,
AdminCycleTime,
AdminCycleTimeExtension,

OperBaseTime,
OperCycleTime,
OperCycleTimeExtension,

CycleStart

ConfigChangeTime,
ConfigPending

OperBaseTime,
OperControlList,
OperControlListLength
OperCycleTime,
OperCycleTimeExtension

SetConfigChangeTime()

BEGIN

CycleStartTime
CycleStart
NewConfigCT

SetCycleStartTime()

NewConfigCT

AdminGateStates

Tick

OperControlList,
OperControlListLength

GateEnabled GateEnabled

GateEnabled

CurrentTime

ConfigPending,
ConfigChangeTime

CurrentTime

ExecuteOperation()
SetGateStates()

LIST EXECUTE (PER PORT)

LIST CONFIG
(PER PORT)

CYCLE TIMER
(PER PORT)

ConfigChange

AdminBaseTime,
AdminControlList,
AdminControlListLength,
AdminCycleTime,
AdminCycleTimeExtension,

OperBaseTime,
OperCycleTime,
OperCycleTimeExtension,

CycleStart

ConfigChangeTime,
ConfigPending

OperBaseTime,
OperControlList,
OperControlListLength
OperCycleTime,
OperCycleTimeExtension

SetConfigChangeTime()

BEGIN

CycleStartTime
CycleStart
ConfigPending
NewConfigCT

SetCycleStartTime()

NewConfigCT

AdminGateStates

Tick

OperControlList,
OperControlListLength

GateEnabled GateEnabled

GateEnabled

CurrentTime

ConfigPending

CurrentTime

ExecuteOperation()
SetGateStates()

ConfigChangeTime

8

• In Clause 8.6.9.1 , Figure 8-19 (Cycle Timer State Machine):
• Remove the global transition from “BEGIN || !GateEnabled || NewConfigCT” to CYCLE_IDLE
• Add a new state named “CYCLE_INIT”

• This state will contain the lines “NewConfigCT = FALSE;” and “ConfigPending = FALSE;”

• Add a global transition from “BEGIN || !GateEnabled” to the new CYCLE_INIT state
• Add a new state named “CYCLE_NEW_CONFIG”

• This state will contain the line “NewConfigCT = FALSE;”

• Add a global transition from “NewConfigCT” to the new CYCLE_INIT state
• Add an UCT transition from the CYCLE_INIT state to the CYCLE_IDLE state
• Add an UCT transition from the CYCLE_NEW_CONFIG state to the CYCLE_IDLE state
• Remove the line “NewConfigCT = FALSE;” from the CYCLE_IDLE state

UCT

BEGIN || !GateEnabled || NewConfigCT

CycleStartTime <= CurrentTime

CycleStart = TRUE;

START_CYCLE

SetCycleStartTime();

SET_CYCLE_START_TIME

CycleStart = FALSE;
NewConfigCT = FALSE;

CYCLE_IDLE

UCT

UCT

CycleStartTime <= CurrentTime

CycleStart = TRUE;

START_CYCLE

SetCycleStartTime();

SET_CYCLE_START_TIME

CycleStart = FALSE;
NewConfigCT = FALSE;

CYCLE_IDLE

UCT

BEGIN || !GateEnabled

NewConfigCT = FALSE;
ConfigPending = FALSE;

CYCLE_INIT

NewConfigCT

NewConfigCT = FALSE;

CYCLE_NEW_CONFIG

UCT UCT

9

• In Clause 8.6.9.1.1 (SetCycleStartTime()), section “d)”
• Following “CycleStartTime = ConfigChangeTime”, add a line containing “set ConfigPending = FALSE”

set ConfigPending = FALSE

10

• In Clause 8.6.9.3 , Figure 8-21 (List Config State Machine):
• Remove the CONFIG_IDLE state and all transitions to it.

ConfigChange && GateEnabled

OperBaseTime = AdminBaseTime;
OperControlList = AdminControlList;

OperControlListLength = AdminControlListLength;
OperCycleTime = AdminCycleTime;

OperCycleTimeExtension = AdminCycleTimeExtension;
NewConfigCT = TRUE;

UPDATE_CONFIG

ConfigChange = FALSE;
SetConfigChangeTime();
ConfigPending = TRUE;

CONFIG_PENDING

ConfigChangeTime <= CurrentTime

ConfigChange && GateEnabled

ConfigPending = FALSE;

CONFIG_IDLE

OperBaseTime = AdminBaseTime;
OperControlList = AdminControlList;

OperControlListLength = AdminControlListLength;
OperCycleTime = AdminCycleTime;

OperCycleTimeExtension = AdminCycleTimeExtension;
NewConfigCT = TRUE;

UPDATE_CONFIG

BEGIN || !GateEnabled
UCT

ConfigChange = FALSE;
SetConfigChangeTime();
ConfigPending = TRUE;

CONFIG_PENDING

ConfigChangeTime <= CurrentTime

11

• In Clause 8.6.9.1 , Figure 8-19 (Cycle Timer State Machine):
• Remove the global transition from “BEGIN || !GateEnabled || NewConfigCT” to CYCLE_IDLE
• Add a new state named “CYCLE_INIT”

• This state will contain the “NewConfigCT = FALSE;” and “CycleNewConfig = FALSE;”

• Add a global transition from “BEGIN || !GateEnabled” to the new CYCLE_INIT state
• Add a new state named “CYCLE_NEW_CONFIG”

• This state will contain the “NewConfigCT = FALSE;” and “CycleNewConfig = TRUE;”

• Add a global transition from “NewConfigCT” to the new CYCLE_INIT state
• Add an UCT transition from the CYCLE_INIT state to the CYCLE_IDLE state
• Add an UCT transition from the CYCLE_NEW_CONFIG state to the CYCLE_IDLE state
• Remove the line “NewConfigCT = FALSE;” from the CYCLE_IDLE state
• In the SET_CYCLE_START_TIME, after “SetCycleStartTime()” add a new line

containing “CycleNewConfig = FALSE;”

UCT

BEGIN || !GateEnabled || NewConfigCT

CycleStartTime <= CurrentTime

CycleStart = TRUE;

START_CYCLE

SetCycleStartTime();

SET_CYCLE_START_TIME

CycleStart = FALSE;
NewConfigCT = FALSE;

CYCLE_IDLE

UCT

UCT

CycleStartTime <= CurrentTime

CycleStart = TRUE;

START_CYCLE

SetCycleStartTime();
CycleNewConfig = FALSE;

SET_CYCLE_START_TIME

CycleStart = FALSE;
NewConfigCT = FALSE;

CYCLE_IDLE

UCT

BEGIN || !GateEnabled

NewConfigCT = FALSE;
CycleNewConfig = FALSE;

CYCLE_INIT

NewConfigCT

NewConfigCT = FALSE;
CycleNewConfig = TRUE;

CYCLE_NEW_CONFIG

UCT UCT

12

• In Clause 8.6.9.1.1 (SetCycleStartTime() procedure)
• Replace each occurrence of “ConfigPending = FALSE” with “(ConfigPending = FALSE) and (CycleNewConfig =

FALSE)”

• Replace each occurrence of “ConfigPending = TRUE” with “((ConfigPending = TRUE) or (CycleNewConfig = TRUE))”

a) If:

ConfigPending = FALSE, and

OperBaseTime >= CurrentTime

(i.e., OperBaseTime specifies the current time or a future time)

Then:

CycleStartTime = OperBaseTime.

b) If:

ConfigPending = FALSE, and

OperBaseTime < CurrentTime

(i.e., OperBaseTime specifies a time in the past)

Then:

CycleStartTime = (OperBaseTime + N*OperCycleTime)

where N is the smallest integer for which the relation:

CycleStartTime >= CurrentTime

would be TRUE.

c) If:

ConfigPending = TRUE, and

ConfigChangeTime > (CurrentTime + OperCycleTime + OperCycleTimeExtension)

Then:

CycleStartTime = (OperBaseTime + N*OperCycleTime)

where N is the smallest integer for which the relation:

CycleStartTime >= CurrentTime

would be TRUE.

d) If:

ConfigPending = TRUE, and

ConfigChangeTime <= (CurrentTime + OperCycleTime + OperCycleTimeExtension)

Then:

CycleStartTime = ConfigChangeTime

a) If:

(ConfigPending = FALSE) and (CycleNewConfig = FALSE), and

OperBaseTime >= CurrentTime

(i.e., OperBaseTime specifies the current time or a future time)

Then:

CycleStartTime = OperBaseTime.

a) If:

(ConfigPending = FALSE) and (CycleNewConfig = FALSE), and

OperBaseTime < CurrentTime

(i.e., OperBaseTime specifies a time in the past)

Then:

CycleStartTime = (OperBaseTime + N*OperCycleTime)

where N is the smallest integer for which the relation:

CycleStartTime >= CurrentTime

would be TRUE.

a) If:

((ConfigPending = TRUE) or (CycleNewConfig = TRUE)), and

ConfigChangeTime > (CurrentTime + OperCycleTime + OperCycleTimeExtension)

Then:

CycleStartTime = (OperBaseTime + N*OperCycleTime)

where N is the smallest integer for which the relation:

CycleStartTime >= CurrentTime

would be TRUE.

a) If:

((ConfigPending = TRUE) or (CycleNewConfig = TRUE)), and

ConfigChangeTime <= (CurrentTime + OperCycleTime + OperCycleTimeExtension)

Then:

CycleStartTime = ConfigChangeTime

