
Input Synchronization for
Cyclic Queueing and Forwarding

Norman Finn
nfinn@nfinnconsulting.com
Huawei Technologies Co. Ltd
18 September, 2021

Introduction
The Shape of Things To Come:
1. The Problem: Synchronizing a CQF input port to a transmitter.
2. The apparent solution found in IEEE 802.1Q: Synchronized time,

link delay measurement, and rotating clock-driven input gates.
3. A better way to think about the problem and its solution.
4. A proposed protocol for solving the problem that has advantages

over the current apparent solution.

The Problem

Basic Cyclic Queuing and Forwarding
As described in Annex T of IEEE Std 802.1Q-2018, each output port has
two CQF queues.

At any given moment, one queue is taking input frames and storing them,
but not offering any frames for transmission. At that same moment, no
input frames are being sent to the the other queue; it is, however, offering
frames to the MAC layer for transmission.

Every TC seconds, the roles of the two queues are interchanged.

Admission control guarantees that no queue will receive more data than it
can hold, and that all of its data can be transmitted within time TC.

The core assumption/requirement of
Cyclic Queuing and Forwarding
If two frames are assigned to the same cycle in one transmission
port, and they both are to be transmitted from the same port at the
next hop, they must be transmitted in the same cycle at that next
hop; they cannot be separated into different cycles.

RIGHT

WRONG

Basic Cyclic Queuing and Forwarding:
Two buffers

Two buffers per port. Input and output buffers swap at the
same moment, once every cycle, period TC. All bridges are
synchronized and swap buffers at the same moment. A small
guard band allows for link delay and forwarding delay. Cycle
time TC > transit time + forwarding time + clock inaccuracy +
max data transmit time.

7/16/2018 6

Two buffers

7/16/2018 7

TICK!TICK!

Two buffers

7/16/2018 8

TICK!TICK!

Receiver synchronization with
link delay

●Annex T of IEEE 802.1Q-2018 fixes long link delay by adding dead time,
which reduces the bandwidth available for CQF streams and sets a
minimum cycle time.

Device A
(transmitter)

Device B
(receiver)

Time à
Link

delay
Link

delay

In-synch:
WRONG

Add dead
time:
RIGHT

Not-quite-Synchronous CQF:
Two buffers sending to three buffers

Input buffer swap is out-of-phase with output buffer swap to
allow for arbitrary link delay or out-of-phase output buffers.
Each buffer cycles through four states: filling, full, draining,
empty.

7/16/2018 10
7/16/2018 10

Two buffers sending to three buffers

7/16/2018 11
7/16/2018 11

TICK!

● Three timed input gates, one for each buffer, turned on/off by the
clock schedule.

●All frames are offered to all three gates; only one is open at any given
moment.

Two buffers sending to three buffers
● Three timed input gates, one for each buffer, turned on/off by the

clock schedule.
●All frames are offered to all three gates; only one is open at any given

moment.

7/16/2018 12
7/16/2018 12

TICK!

Two buffers sending to three buffers

7/16/2018 13
7/16/2018 13

TICK!

This output swap
must be synched with

this input swap

Two buffers sending to three buffers

7/16/2018 14
7/16/2018 14

TICK!

This output swap can be out-
of-phase with input swap,
must be have same frequency

Two buffers sending to three buffers

7/16/2018 15
7/16/2018 15

TICK!

This output swap
must be synched with

this input swap

(Link delay is not shown in this sequence.
Instead, we show the output buffer cycles
not in synch in the two bridges. It gets
the point across about three buffer timing.

Two buffers sending to three buffers

7/16/2018 16
7/16/2018 16

TICK!

This output swap can be out-
of-phase with input swap,
must be have same frequency

Two buffers sending to three buffers

7/16/2018 17
7/16/2018 17

TICK!

This output swap
must be synched with

this input swap

Two buffers sending to three buffers

7/16/2018 18
7/16/2018 18

TICK!

This output swap can be out-
of-phase with input swap,
must be have same frequency

Receiver synchronization: Three buffers

●Offsetting the input clock by the link delay means that link delay does not
add to the required dead time. More bandwidth is available for CQF.

● This looks, to the receiver, just like the animation just shown.

Device A
(transmitter)

Device B
(receiver)

Time à
Link

delay
Link

delay

In-synch:
WRONG

Link delay
offset:
RIGHT

Receiver synchronization: Two buffers

●Annex T of IEEE 802.1Q-2018 fixes long link delay by adding dead time,
which reduces the bandwidth available for CQF streams and sets a
minimum cycle time.

Device A
(transmitter)

Device B
(receiver)

Time à
Link

delay
Link

delay

In-synch:
WRONG

Add dead
time:
RIGHT

Is link delay important?
●In a car? No. 1 meter @ 100 Mb/s, = 0.3 bits.
●To a service provider? Yes. 100 km @ 10 Gb/s

= 3M bits = 3000 frames = a very, very large
CQF cycle.

The problem
How do we sync the input port to the output
port, offset by link delay?

The apparent solution

How schedules are defined
An input or output schedule is defined by:
●A schedule of on/off events, with a total duration (in nanoseconds)

which is less than or equal to the cycle time at which the schedule
repeats.

●A cycle time, expressed as a rational number of seconds/cycle.
●A cycle start time, which is a moment in the past (or future) at

which time the schedule did (or will) begin.

The problem:
Adjust receiver cycle start time by link delay

●We want offset the cycle start time of the receiving input gates from the
transmitting output gates by an amount equal to the link delay.

Device A
(transmitter)

Device B
(receiver)

Time àLink
delay

transmitter
start time

receiver
start time

The apparent solution
●Use some form of the Precision Time Protocol (PTP), e.g. IEEE Std

802.1AS, to synchronize time between the transmitter and the
receiver.

●Use half the two-way link delay, as measured by PTP, to offset the
input cycle start time from the output cycle start time, which is
synchronized among all bridges.

Another way to think
about the problem

What’s wrong with the apparent
solution?
● For some users, nothing is wrong with that scheme.
● But some use SyncE, instead of PTP, to get all bridges running at

the same frequency.
● There is some asymmetry in the link delay:
●Asymmetry cannot be measured easily; it is normally configured.
●Asymmetry has to be accounted for by adding dead time to the cycle.
● For long links, this can be a significant limit on the minimum cycle time.

Is link asymmetry important?
●In a car? No. 1 meter @ 100 Mb/s = 0.3 bits.
●To a service provider? Yes. 100 km @ 10 Gb/s

= 3M bits = 5000 small frames. 1% asymmetry
is not unusual, which is 50 frames dead time
per cycle.
●This matters for a service provider offering a

high-speed service for a few critical flows.

Transmit cycles synchronized
Device A
(transmitter)

Device B
(receiver) Link

delay

Device B
(transmitter)

Effective phase difference

● The “effective phase difference” determines the CQF buffering delay in
device B. If it is small, two buffers and a little dead time can be used.

Transmit cycles not synchronized
Device A
(transmitter)

Device B
(receiver) Link

delay

Device B
(transmitter)

0 effective phase difference

● The “effective phase difference” determines the CQF buffering delay in
device B. If it is small, two buffers and a little dead time can be used.

Long link delay
Device A
(transmitter)

Device B
(receiver) Link

delay

Device B
(transmitter)

Effective phase difference

● Link delay can be multiple cycles long, but still yield a small effective
phase difference.

What do we (Device B’s receiver input
gates) really care about?
●We don’t care about the actual link delay in nanoseconds.
●We do care about setting the receive cycle start time so that we

assign received frames to cycles using exactly the boundaries that
the transmitter used.

●We don’t care whether our output cycles are synchronized with
the previous hop’s output cycles.

●We do care about the “effective phase difference”, because that
determines how many buffers we need (2 or 3).

●And, critically, we know that we are frequency-locked with the
transmitter.

A new proposed
solution

The proposed solution

Device A
(transmitter)

Device B
(receiver)

Time à

Link
delay

Time
Marker
Frame

CQF Phase
Offset
Message

Nearby Cycle
Start time

New receive
Cycle

Start time

Link
delay

DIFFERENCE
TIME in CQF
Phase Offset
Message

measured

applied

Before:
WRONG

After:
RIGHT

The proposed solution:
transmitter’s end
1. Device A transmits a Timing Marker Frame. This can be any frame, but

it must carry an identification value (TMFID) that changes with each
transmission.

2. After transmitting the Timing Marker Frame, Device A recovers the
time at which the first bit of the frame was transmitted from the
hardware. IEEE Std 802.3 Clause 90 specifies a method for
accomplishing this.

3. Device A then transmits a CQF Phase Offset Message that contains a)
the TMFID of a Timing Marker Frame, and b) the difference, in local
time, between the start of a recent transmission cycle and the Timing
Marker Frame transmission time recovered in step 2, above.
(Specifically, [time of start of cycle] – [time of start of transmission].)
Typically, this time difference would be expressed in increments of
nanoseconds or finer. The cycle chosen may be such that the time
difference is positive or negative.

The proposed solution:
receiver’s end
1. Device B receives a Timing Marker Frame. It records the time of

arrival of the first bit of the frame (again, IEEE Std 802.3 clause
90), and the TMFID of the frame.

2. Device B receives a CQF Phase Offset Message with a TMFID
matching a recently-recorded Timing Marker Frame.

3. The time of reception of the Timing Marker Frame, plus the
(signed) time difference carried in the CQF Phase Offset Message,
is the local time at which the receive cycle that corresponds to
the transmission cycle selected by the transmitter for reporting in
the CQF Phase Offset Message, should have started (or should
start, if in the future). This establishes the cycle start time for the
receiver’s input gates in local time.

NOTE:
● The actual time of flight of the Timing Marker Frame is not

determined, and is not relevant. All that matters is aligning the
relative phases of the transmitter’s cycle and the receiver’s cycle.
Thus, link asymmetry is also irrelevant.
● (The actual link delay is important when figuring out the total end-to-end

flight time of a frame, but that is not this problem.)
● The in/out difference time, and thus the internal buffering delay

for Device B, can be determined trivially.
●All measurements are in local time; no synchronization is

necessary beyond frequency locking.

Notes
● The receiver knows the phase from the first Timing Marker / Phase Offset

Message pair. If the transmitter sends further periodic Timing Marker Frames
and Phase Offset Messages, the receiver can track the accuracy of its phase
determination. This allows it to take appropriate action, such as:
● Raising an alarm or demoting multi-CQF traffic to best-effort priority, if the phase drifts

excessively.
● Adjusting the phase, if it drifts slowly, e.g. due of diurnal temperature changes in a long

optical fiber, which is made possible by using more than three buffers.
● The Timing Marker Frame can be a new protocol (a new EtherType), or an

existing suitable frame, such as one used by the Precision Time Protocol (PTP,
IEEE Std 1588, IEEE Std 802.1AS, or others), or by Connectivity Fault
Management (CFM, IEEE Std 802.1Q clauses 18-22).

● The Phase Offset Message can be a new protocol (a new EtherType), or the
information can be added as an additional information element in an existing
timing protocol such as PTP or CFM.

Conclusion

Improvements over current apparent
solution for service providers
● By using three buffers instead of two, CQF can eliminate the dead

time imposed link delay. This is important to service providers.
● By using a protocol based on IEEE Std 802.3 Clause 90 timestamps,

the receiver’s timed input gates can placed in phase with the
transmitter’s timed output gates.

● This protocol removes dead time caused by link delay asymmetry.
● This protocol supports slow changes in link delay.
● This protocol supports CQF in a SyncE environment without PTP.

Discussion

Thank you

