MAC Address Format
Summary and Suggestion



MAC Address Format

* |ETF and IEEE have different patterns for mac-
address

— |[ETF Format: pattern '[0-9a-fA-F1{2}(:[0-9a-fA-FI{2}){5};
e uses ‘.’ as separator

— |EEE Format: pattern "[0-9a-fA-F]{2}(-[0-9a-fA-F]{2}){5}";
e uses ‘-’ as separator

e Also “’ has a defined meaning in IEEE specs (bit-reversal
of each hex digit)

 However the bit-reversal issue is historic (but there
really should be an amendment to official recognize
that fact)



Not just a -" or “:" problem

* |EEE definition
e Pattern allows upper

and lower case
characters but
description says
uppercase is used.

typedef mac-address {
type string {
pattern "[0-9a-fA-F]{2}(-[©-9a-fA-F]{2}){5}";

1
J

}
description
"The mac-address type represents a MAC address in the canonical
format and hexadecimal format specified by TEEE Std 802. The
hexidecimal representation uses uppercase characters.”;
reference
"3.1 of IEEE Std 802-2014
8.1 of IEEE 5td 802-2014";

|ETF definition

Pattern allows upper
and lower case but
makes no indication on
which is used.

typedef plac-address {

type string {
pattern '[0-9a-fA-F]{2}(:[@-9a-fA-F]{2}){5}";

1
J

description
"The mac-address type represents an IEEE 802 MAC address.
The canonical representation uses lowercase characters.

In the value set and its semantics, this type is equivalent
to the MacAddress textual convention of the SMIv2.";
reference
"IEEE 802: IEEE Standard for Local and Metropolitan Area
Networks: Overview and Architecture
RFC 2579: Textual Conventions for SMIv2";




Issue with strings

* mac-address typedef is a string in YANG

 That means when mac-address is used as a key,
the format used must match not only the
separator (“:" or *-’) but the case of the character
representing the hexadecimal number

* Review of implementations indicates that “:" or ‘-’
doesn’t change the ordering of hexadecimal digits
in the string.

— However the issue of upper and lower case and the
separator cause issues when comparing mac-
addresses



Why SNMP is different

* In SNMP a MacAddress was an OCTET STRING
of size 6 with a display hint.

* On the wire the MacAddress is treated as a
string of octets that are not affected by the
display hint or the separator used.

e So AE-12-FF would be the same as ae:12:ff



What to do

Common wisdom says it is too late to change either the
|IEEE or IETF definition to use a 6 byte binary array

— This would fix the “on-the-wire” and key comparison issue
— Whatever is done should be done for any OUI types also

ldentify potential conflicts

— Modules that use both yang:mac-address and ieee:mac-
address and try to compare them

— Even if only one definition is used, some hints or guidelines
should be created because the format of the string
(upper/lower case) matters for comparison

Suggestion: Normalized mac-address format typedef
(next slide)



Suggestion

e Leave the IETF and IEEE definitions alone

* Create a new datatype in ieee802-types.yang

— Implementations could use the normalized format
when mac-address is used as a key or there is a
concern over the string matching

typedef mac-address-normalized {
type string {
pattern "[0-9A-F]1 {2} (:[0-9A-F]{2}) {5}";
}
description
"The mac-address type represents a
normalized MAC address format. There is no ambiguity
for in the format so string comparison is possible.";
reference
"3.1 of IEEE Std 802-2014
8.1 of IEEE Std 802-2014
IETF RFC 6991"; }



	MAC Address Format�Summary and Suggestion
	MAC Address Format
	Not just a ‘-’ or ‘:’ problem
	Issue with strings
	Why SNMP is different
	What to do
	Suggestion

