MAC Address Format
Summary and Suggestion



MAC Address Format

 |[ETF and IEEE 802 have different patterns for
mac-address

— |[ETF Format: pattern '[0-9a-fA-F]{2}(:[0-9a-fA-FI{2}){5};
e uses ‘.’ as separator

— |EEE 802 Format: pattern "[0-9a-fA-F]{2}(-[0-9a-fA-F]{2}){5}";
e uses ‘-’ as separator

e Also 2’ has a different interpretation in IEEE 802 specs
than -’ does. The “.’ indicates bit-reversal of each hex
digit.

— However the bit-reversal usage is historic
» An amendment to IEEE Std 802-2014 is needed



Not just a -" or “:" problem

e |EEE definition
* jeee802-types.yang

o »”

e Pattern allows upper
and lower case
characters but
description says
uppercase is used.

typedef mac-address {

1
J

type string {
pattern "[0-9a-fA-F]{2}(-[©-9a-fA-F]{2}){5}";
}
description
"The mac-address type represents a MAC address in the canonical
format and hexadecimal format specified by TEEE Std 802. The
hexidecimal representation uses uppercase characters.”;
reference
"3.1 of IEEE Std 802-2014
8.1 of IEEE 5td 802-2014";

|ETF definition
ietf-yang-types.vang

“u,n

Pattern allows upper
and lower case but
notes that lower case is
canonical.

type string {
pattern '[@-9a-fA-F]{2}(:[@-9a-fA-F]{2}){5}";

1

J

description
"The mac-address type represents an IEEE 802 MAC address.
The canonical representation uses lowercase characters.

In the value set and its semantics, this type is equivalent
to the MacAddress textual convention of the SMIv2.";
reference
"IEEE 802: IEEE Standard for Local and Metropolitan Area
Networks: Overview and Architecture
RFC 2579: Textual Conventions for SMIv2";



https://github.com/YangModels/yang/blob/master/standard/ieee/published/802/ieee802-types.yang
https://github.com/YangModels/yang/blob/master/standard/ietf/RFC/ietf-yang-types%402010-09-24.yang

Issue with strings

* mac-address typedef is a string in YANG

 That means when mac-address is used as a
key, the input format used must match not
only the separator (.’ or *-’) but the case of
the characters representing the hexadecimal
number

* |f a mac-address is used as a key, or if two
mac-addresses need to be compared, a
normalized format would be useful.



Some Example Trouble Spots

ietf-12vpn-svc uses mac-address as a key

ietf-i2rs-rib.yang has a mac-address leaf that
the description says is “used for matching”

ieee802-dotlqg-lldp.yang uses mac-address as
a key

ieee802-dotlqg-tsn-types.yang defines a mac-
address without using the datatype, but uses
the same pattern as the ieee mac-address
datatype



Why SNMP is different

* In SNMP a MacAddress is an OCTET STRING of
size 6 with a display hint.

* On the wire the MacAddress is treated as a
string of octets that are not affected by the
display hint or the separator used.

e So AE-12-FF would be the same as ae:12:ff



What to do

Common wisdom says it is too late to change either the IEEE or IETF
definition to use a 6 byte binary array

— This would fix the “on-the-wire” and key comparison issue
— Whatever is done should be done for any OUI types also

— Another concern is that the current patterns only support 48-bit MAC
addresses, but IEEE Std 802-2014 also mentions “extended address” or 64-bit
MAC addresses.

Identify potential conflicts

— Modules that use both yang:mac-address and ieee:mac-address and try to
compare them or present two different input formats because of the pattern
differences.

— Even if only one definition is used, some hints or guidelines should be created
because the format of the string (upper/lower case) matters for comparison

A Suggestion is provided on the next slide
Followed by a summary of various options on how to proceed



Suggestion

* Leave the IETF and IEEE definitions alone
* Create a new datatype in ieee802-types.yang

— Implementations could use the normalized format
when mac-address is used as a key or there is a

concern over the string matching
| The pattern has no A
typedef mac-address—-normalized ({
type string | separator and allows only
pattern TLO7OAZFI 2] LIO=SAFIEN IR upper case, this avoids
description

"The mac-address type represents a any amblgulty /

normalized MAC address format. There is no ambigui
in the format so string comparison 1s possible.'7

£
- egeilcif IEEE Std 802-2014 Do we need to fix the
size? Should this be {7}?
3

}

8.1 of IEEE Std 802-2014

IETF RFC 6991"; }
3/11/2021




Summary

* Do Nothing

* Normalized mac-address format typedef
— Suggestion from Previous Slide

e Other thoughts?

— YANG support for display-hint like functionality

— String equivalence pattern to provide flexibility for
string (and key) comparisons

— Other input and/or display capabilities



	MAC Address Format�Summary and Suggestion
	MAC Address Format
	Not just a ‘-’ or ‘:’ problem
	Issue with strings
	Some Example Trouble Spots
	Why SNMP is different
	What to do
	Suggestion
	Summary

