60802 Time Sync Ad Hoc Status Update

David McCall – Intel Corporation

Content

- Goals
- Timeline
- Subject Areas
- Interim Meeting Agenda

Goals

- Requirement of 1us time sync accuracy over 64 hops
 - Goal of 1us time sync accuracy over 100 hops
 - Worst case, including all errors, at application level (ClockSource, ClockTarget)
- Normative requirements for an IA-station
 - Parameters for interoperability
 - Error generation limits for system-level performance
 - Possibly error tolerance requirements for system-level performance
- Informative text for how error generation limits (and error tolerance requirements) can be reasonably met
 - Reasonable cost; existing silicon.

Timeline

 Goal is to have complete contribution text ready for review during 802 Plenary in November

Subject Areas

- 1. Messaging & Algorithms
- 2. Clock Filters & Control Loops
- 3. Sync Message Timestamping
- 4. Rate Ratio Measurement
- 5. Normative vs. Informative
- 6. Unified Proposal

1. Messaging & Algorithms

- Best settings for the various parameters
 - pDelay Interval, Sync Interval, etc...
- How to model errors, including frequency offset
 - Temperature curves, etc...
- Algorithmic compensation for errors
 - Using older pDelayResp timestamp information
 - Aligning pDelayResp with Sync
 - Clockdrift measurement and compensation (NRR & RR)
- Summary: how good is the information a device gets from the time sync messaging?
 - GM and Local Clock; not ClockSource, ClockTarget, ClockMaster, ClockSlave

2. Clock Filters & Control Loops

- Clock Source, Clock Master, Clock Slave & Clock Target filtering and control loops.
- Summary: how well does the accuracy at the messaging level translate to accuracy at the application level?

3. Sync Message Timestamping

- Is it better to use a synchronised ClockSlave for message timestamping?
 - 802.1AS relies on syntonisation, i.e. precisely measuring the difference in frequencies between clocks and compensating for it via RR and NRR
 - Siemens' existing implementation relies on synchronisation and, once synchronised, does not compensate for any (minor) variations in frequency

4. Rate Ratio Measurement

- Is it better to measure Rate Ratio directly from Sync messaging?
 - 802.1AS measures Rate Ratio (RR) via an accumulation of Neighbor Rate Ratio (NRR).
 - Neighbor Rate Ratio is measured via multiple pDelayResp messages.
 - Siemen's existing implementation measures Rate Ratio via multiple Sync messages

5. Normative vs. Informative

- What Normative Requirements are necessary?
 - How should error generation (and possibly error tolerance) be measured?
 - Must be a testable requirement
- What Informative Text should be included?
- Initially will be a conversation about the structure & approach
- Eventually will be about specific text based on the four subject areas above

6. Unified Proposal

- Text for contribution and review during November Plenary
- A lot of the text will come from 5, but probably not all of it

Interim Meeting Agenda – 60802 Time Sync

Monday 10:30am – 12:30pm

- P802.3cx Introduction Jingfei Lv, Silvana Rodrigues Huawei
- Status update on time sync discussions David McCall Intel

Wednesday

- 10:30am 12:30pm: Further 60802 Time Sync Simulation Results using Offset Compensation Factor Geoff Garner Huawei
- 4pm 6pm : Time Sync David McCall
 - Review of error sources, equations and behaviours (based on Monte Carlo analysis)
 - Discussion of acceptable balance for solution, between complexity of implementation and other factors such as pDelayInterval, SyncInterval, residenceTime, etc...

Thursday 1:30pm – 3:30pm

- Time Sync David McCall
 - Continued discussion, if required
 - Next steps for each subject area
 - If there is still time: Normative Requirements how should error generation be measured?

Interim Meeting Agenda – Other Time Sync

- **Tuesday**: TSN P802.1DP/AS6675
 - 10:30am 12:30pm: Time Sync simplification Safety considerations David Modrono – SoCe
 - 1:30pm 3:30pm: (first topic) Time Sync Integrity Abdul Jabbar GE Research

Thank you