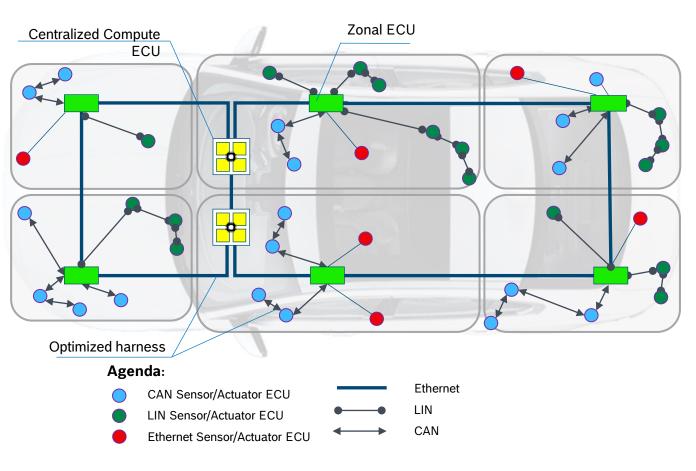


Short Ethernet Frames

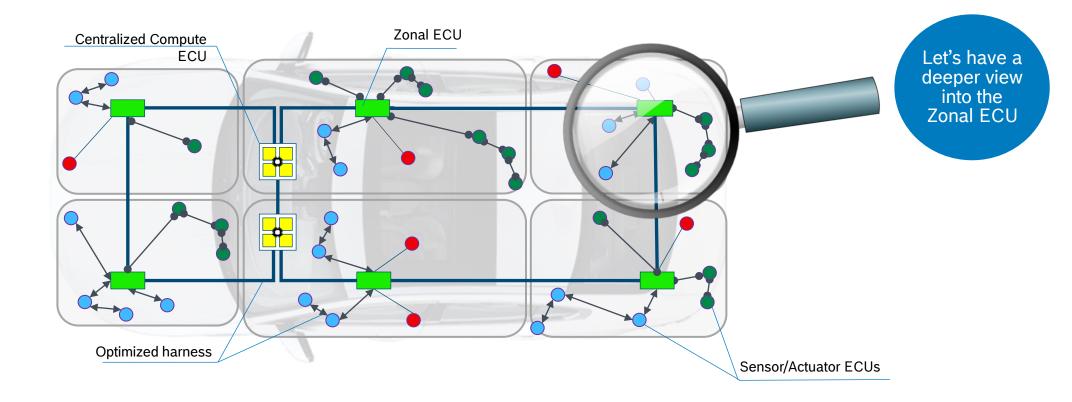
Automotive Use Case

Jens Bierschenk, Robert Bosch GmbH November 2022


This topic was already presented in <u>IEEE 802.3 NEA</u> - in cooperation with Johannes Specht - and the following slides are a continuation of this contribution.

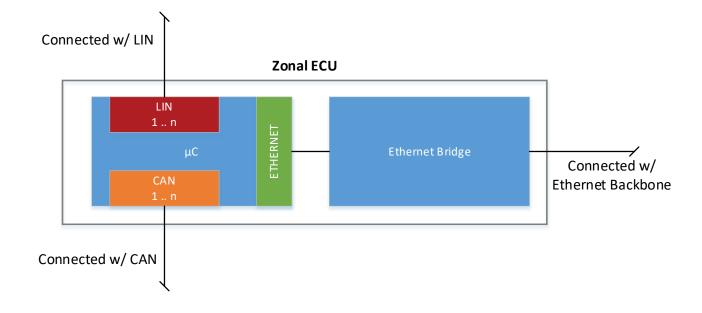
This contribution is not related to any profile discussion in IEEE 802.1DG. The aim of this presentation is to start a new discussion about "Short Ethernet Frames" at IEEE 802.1 TSN.

If there is a standard for shorten Ethernet Frames - which is currently not the case - a profile such as IEEE 802.1DG may can nominate this standard.


Short Ethernet Frames: Automotive Use Case Assumptions

- Zonal architecture
- Zonal ECUs are connected with legacy communication, e.g., LIN, CAN
- Tunneling of legacy communication over Ethernet is required
 - 1. Zonal-to-Zonal ECU, and/or
 - 2. Zonal ECU-to-Centralized Compute ECU-to-Zonal ECU

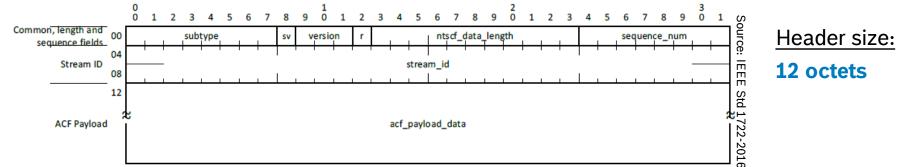
Short Ethernet Frames: Automotive Use Case **Deeper view of communication aspect**

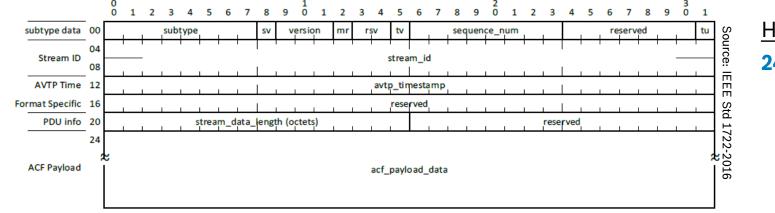

Short Ethernet Frames: Automotive Use Case **Deeper view of communication aspect**

Focus:

 LIN and CAN communication & tunneling from Zonal ECU over the Ethernet backbone, via IEEE 1722-2016

An **easy** view of a Zonal ECU

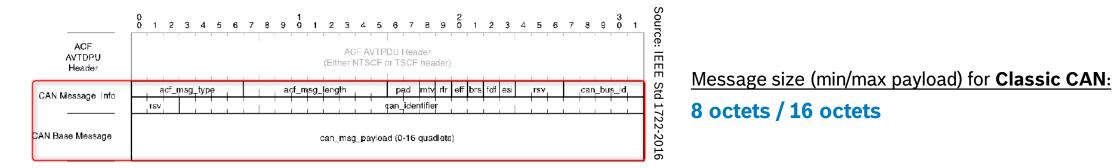

 Internal µC has legacy communication, e.g., CAN, LIN

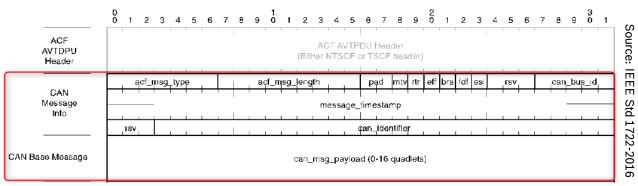

BOSCH

Short Ethernet Frames: Automotive Use Case Background: IEEE 1722-2016 ^(1/3)

- Two different Control header:
 - Non-Time-Svnchronous Control Format header (NTSCF)

Time-Synchronous Control Format header (TSCF)



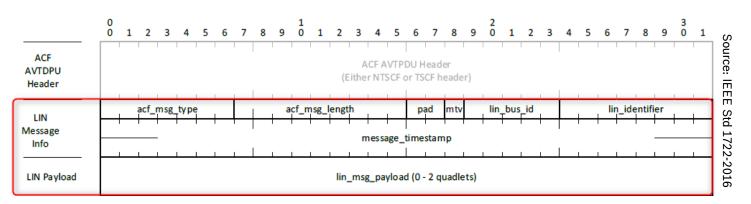

Short Ethernet Frames: Automotive Use Case Background: IEEE 1722-2016 ^(2/3)

Different ACF messages for different automotive legacy communication

– Abbreviated CAN

- CAN

Message size (min/max payload) for Classic CAN:


16 octets / 24 octets

Cross-Domain Computing Solutions | XC/EYA2 – Bierschenk | 2022-11-15

BOSCH

Short Ethernet Frames: Automotive Use Case Background: IEEE 1722-2016 ^(3/3)

– LIN

Message size (min/max Payload) for LIN:

12 octets / 20 octets

Short Ethernet Frames: Automotive Use Case Ethernet Frame Length by using IEEE 1722-2016

9

		Preamb	ble	Destination MAC	Source MAC	IEEE 802.1Q Tag (optional)	Ethertype/ Length	NTSC header/ TSC heade		22-2016 ACF message	CRC	IFG
		8 octe	ts	6 octets	6 octets	4 octets	2 octets	12/24 oct	tets		4 octets	12 octets
				Non-Time-Synchronous Control Saving (in %) for min. and max. legacy payload			Time-Synchronous Control saving (in %) for min. and max. legacy payload			Legacy Payload Inside	e	
	Abbrev CA		▶ 2	e w/ IEEE 802.1G 26.2% .6.7%	tag:	Frame w/ IEE ► 11.9% ► 2.4%	EE 802.1Q tag:					
	(Classic		► 3	e w/o IEEE 802.1 81.0% 21.4%	Q tag:	Frame w/o IE ► 16.7% ► 7.1%	EEE 802.1Q tag:			1 out of 24 cas rame length is s		
	CA (Classic		▶ 1	e w/ IEEE 802.1Q .6.7% '.1%	tag:	Frame w/ IEE ► 2.4% ► no savir	EE 802.1Q tag:			 only in 3 c octets 	ases it is grea	ter than 84
		c CAN)	▶ 2	e w/o IEEE 802.1 21.4% .1.9%	Q tag:	Frame w/o IE ► 7.1% ► no savir	EEE 802.1Q tag:					
	LI	N	▶ 2	e w/ IEEE 802.1G 21.4% .1.9%	tag:	Frame w/ IEE > 7.1% > no savir	EE 802.1Q tag:					
			▶ 2	e w/o IEEE 802.1 26.2% .6.7%	Q tag:	Frame w/o IE ► 11.9% ► 2.38%	EEE 802.1Q tag:					BOSCH

Short Ethernet Frames: Automotive Use Case How could be realized?

- Current Media Access Control (MAC) requires a minimum Ethernet Frame size of 84 octets
- There is a need to shorten the Ethernet Frame size
- Possible options for starting and realizing this activity:
 - 1. Enhance the MAC
 - 2. Create an additional MAC
 - 3. Use the GSCF approach, as discussed in 802 Nendica/IEEE 802.1
- GSCF does not depend on the 802.3 MAC's 84 octets minimum length constraint
 - LEN_MIN in [Technical Description for Cut-Through Forwarding in Bridges] and *lenmin* in [Generic Serial Convergence Function (GSCF)]
 - GSCF could be an enable for shorter Ethernet Frames in Automotive

Source: <u>Generic Serial Convergence Function (GSCF)</u> For information about the GSCF, please have a deeper look on following pages of the referred source: 10, 19, 26 and 28

🗎 BOSCH

Short Ethernet Frames: Automotive Use Case Summary

- For automotive it would be **useful** of reducing the min. Ethernet Frame size below 84 octets
 - The benefits are:
 - increase bandwidth efficiency, as shown
 - decrease interference/delays
 - decrease complexity/delays (less multi legacy message packing in Ethernet frames)
- Legacy Traffic
 - Especially in case of tunneling automotive legacy communication into the Ethernet backbone and vice versa by using IEEE 1722-2016 transport protocol
 - 21 out of 24 cases has been proven an advantage of reducing the min. Ethernet Frame size of 84 octets
 - Shorter headers other than 1722 may appear in future while legacy communication is assumed to remain for a longer period of time. In this case, the bandwidth efficiency would increase further by reducing the min. Ethernet Frame size

Cross-Domain Computing Solution | XC/EYA2 - Bierschenk | 2022-11-15

#LikeABosch Thank you for your attention

