

COMMERCIAL AIRCRAFT

Cabin Electronics - Airbus Buxtehude H. Lambers, W. Fischer, D. Kliem

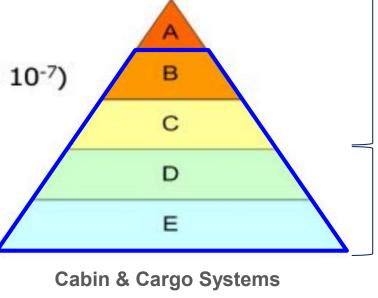
AIRBUS

What's so special about electronics for aircraft?

Characteristics of Cabin Electronic Equipment: (compared to non-A/C electronic products)

- Extensive Development and Qualification
- Small Quantities
- Long Manufacturing Life Cycles
- Extensive Operating and Service Life
- Continuous efforts to replace obsolete parts

Environmental Conditions
Drip Water
Vibration
Temperature
RF-Susceptibility
RF-Emission
Lightning
Flammability
Radiation


Aircraft Electronics: Low unit counts & long life cycles

Safety, Criticality & Certification - Design Assurance Level (DAL)

Safety Levels

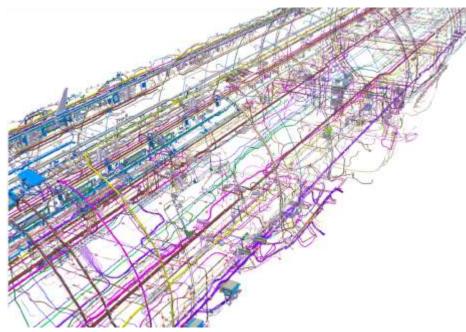
- Level A: Catastrophic (≤ 10⁻⁹)
- Level B: Hazardous/Severe (≤ 10⁻⁷)
- b Level C: Major (≤ 10⁻⁵)
- Level D: Minor (≤ 10⁻⁵)
- Level E: No Effect (N/A)

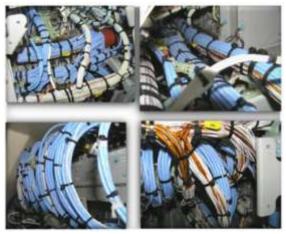
Deterministic

- Bare Machine or Real-Time OS
- Embedded C
- Full requirement traceability
- Full test & code coverage
- Evidence for certification

Non Deterministic

- COTS HW & SW Components
- All kinds of OSs & languages
- Less stringent
- Open Source


Shared systems must follow the highest DAL Level they serve!


Todays Complexity in the Field

- Coexisting fit for purpose Systems => Limited growth capacities
- Various topologies, data transmission standards & interfacing technologies
 → ARIC429, AFDX, CAN, 'Discretes', Ethernet, RS485, UART,
- Many gateways → Development-, Production- & Maintenance Cost
- Any advantages?
 - → Less cross effects between systems
- New applications
 - ⇒ More data!
 - ⇒ More bandwidth!
 - ⇒ More cables & gateways?
 - ⇒ More weight??

Source: Airbus

The Goal: Future Proof Data Networks + Improved SWaPC

Ethernet / IP network benefits:

- Scalability / Performance
- Physical layer technologies from backbone to "last meter"
- Stable Protocols available over time
- Cost effective RCs → COTS based

Source: Airbus

Common network shared by many functions enabling

Size Weight and Power and Cost + Performance improvements!

One of the remaining challenges: Determinism!

TSN - The right Enabler?

Very early thoughts still driven by TDMA idea

(802.1DP / SAE AS6675 was yet to come)

Time Synchronization (gPTP; 802.1AS-2011)	Time Aware Scheduler (TAS; 802.1Qbv)	Per Stream Filtering & Policing (PSFP; 802.1Qci)	Credit Based Scheduler (CBS; 802.1Qav)	Frame Replication and Elimination (FRER; 802.1CB)	
Maintain a precise time reference in the network	Guarantee a hard data delivery deadline	The police' managing e.g. babbling idiots, etc.	Ensure a "smooth" & timly data delivery	Seamless Redundancy - without interruption	
1588v2 works only among witches, but not with IXIA			HW Bug (Proposed Option Frame Based Shaper)	Interference with PSFP (FW issue)	
	Basic functionality only (A0 HW limitation)	Requires HW revision 80 (Q3/22)	Requires HW revision 80 (Q3/22)	Requires HW revision B((Q3/22)	
		Basic functionality passed More Testing in Progress	Scheduled in July rel.	More tests in big topolog	

	Networking Standards	Decision
Time Reference	802.1AS Timing and Synchronization	Mandatory
Scheduling	802.1Qbv Scheduled Traffic	Mandatory
	802.1Qbu & 802.3br Frame preemption	Optional
	802.1Qch: Cyclic queueing and forwarding	Dropped
	802.1Q Strict Priority	Mandatory
	802.1Qav Credit-based Shaper	Mandatory
	Other work conserving scheduler	Dropped
Configuration	802.1Qcc: Enhancements and improvements for stream reservation	Mandator
Seamless Redundancy	802.1CB Frame replication and elimination	Mandatory
	High-availability Seamless Redundancy (HSR)	Optional
	Parallel Redundancy Protocol (PRP)	Dropped
	Spanning Tree Protocols (e.g. RSTP)	tbc
"Stream Control"	802.1Qci Ingress Policing	Mandator
	Other Ingress Filtering & Policing methods (vednor specific)	Dropped

First hands on impressions

Markets and standards implementation still evolving

.... don't try everything at once!

Cabin Management Functions

Audio & Music Cabin Lights Connectivity

(FE) IFE Integration (

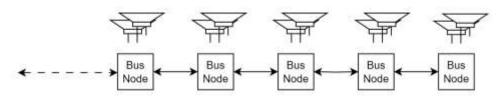
Air Conditioning

Satellite/Ground Connectivity Video
Connectivity Surveillance Doors & Slides ((())) Wireless
Connectivity

Smoke Detection

Evacuation Signaling

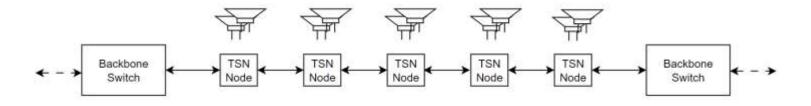
Passenger Signs Crew Interphone



and much more (50+ applications)

Safety & Security, Efficient Crew Operations and Passenger Comfort.

New Complexity - Example 1: Power Consumption


Todays proprietary bus system in service:

A350 DEU-A - Bus Node as in Service today

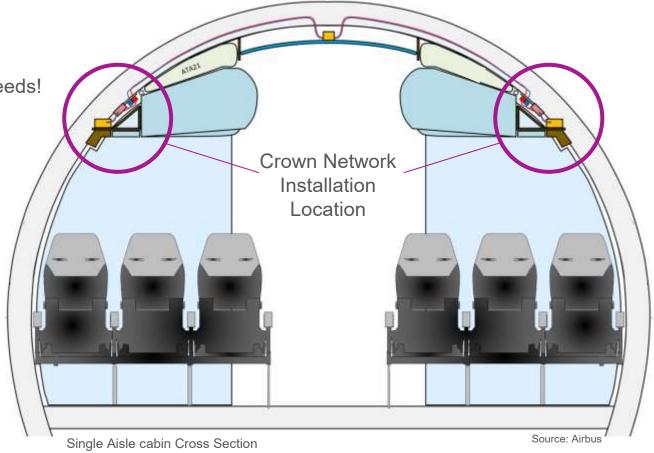
Future system using Ethernet & TSN (generic topology):

If you give an engineer a faster data bus ...

... he will ask for more power

More performance drives more, new applications, but also higher power needs!

New Complexity - Example 1: Power Consumption


Power Supply:

The Electric power distribution system must cover all needs!

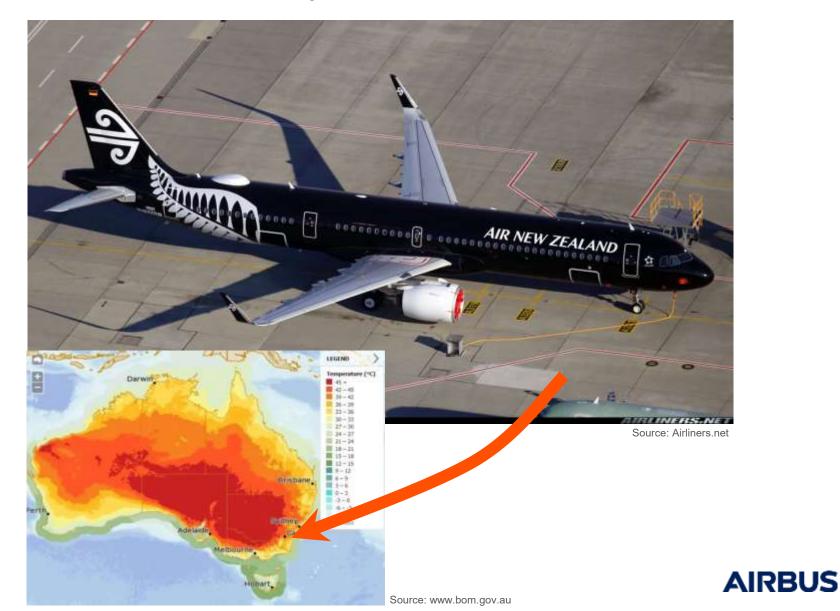
- ⇒ Electric power distribution is a "High" DAL function
- ⇒ Higher currents → Thicker cables → Weight
- ⇒ Potential adverse SWaPC impacts

Crown Equipment Location Overview

- Limited installation space
- No forced cooling available
- No active cooling → Less maintenance effort
 - ⇒ Limited heat dissipation capacity!

Power efficiency is key!

New Complexity - Example 1: Power Consumption


Now imagine ...

... your A321 is parked here:

Canberra in January:

→ Mean daily maximum 28.8 °C

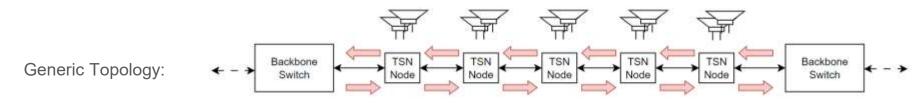
Each watt counts!

New Complexity - Example 2: Passenger Address (PA) Function

Some Key Requirements ...:

- Max round trip delay microphone to all speakers: 35ms (Lip Sync.)
- Max speaker to speaker delay: 1ms
- Design Assurance Level: C
- System availability in Emergency Power Mode: 500 ms (based on EASA CS-25)

Source: Airbus


New Complexity - Example 2: Passenger Address (PA) Function

Some Key Requirements ...:

- Max round trip delay microphone to all speakers: 35ms (Lip Sync.)
- Max speaker to speaker delay: 1ms
- Design Assurance Level: C
- System availability in Emergency Power Mode: 500 ms

... and how to implement them:

- TSN features used for implementation:
 - Meet latency requirements and ensure proper audio rendering: 802.1Qav (FQTSS) & 802.1AS (gPTP)
 - Ensure Reliability & Robustness to meet DAL-C requirements: 802.1CB (FRER) & 802.1Qci (PSFP)

Requirements met - no need yet for TAS (Qbv)

New Complexity - Example 2: Passenger Address (PA) Function

Some Key Requirements ...:

- Max round trip delay microphone to all speakers: 35ms (Lip Sync.)
- Max speaker to speaker delay: 1ms
- Design Assurance Level: C
- System availability in Emergency Power Mode: 500 ms

... What actually means: Emergency Power Mode?

- Use Case: Total Loss of Main Electrical System (TLMES)
 - ⇒ Requires rigorous housekeeping to conserve electric power
 - ⇒ Parts of the system will be re-powered only if required
 - ⇒ The Handset PTT button triggers re-powering the full PA Function

Air Transat Flight 236 after the emergency landing

Source: FAA (Public Domain)

How to realize 500ms startup time?

New Complexity - Example 2: Passenger Address (PA) Function

Some Key Requirements ...:

- •
- System availability in Emergency Power Mode: 500 ms

... Rapid power up enabler and limitations:

- Hardware & software component selection for rapid power up
 - ⇒ FPGA based hard wired switch IPs
 - ⇒ Small, fit for purpose, fast booting SW footprint

Up to 50 speakers are installed in an A321 aircraft

- Layer 1 time to link + gPTP Re-Synchronization across multiple hops are setting a limit
 - ⇒ Rigorous control of power consumption requires more complex power management potentially adding weight too
 - ⇒ Emergency Power Up requires a "work around" TSN PA will be the only application running this 'corner use case'

Specific aircraft requirements can add substantial complexity

New Complexity - Example 3: Switch & SW Complexity

Switch location & sizing:

- Ebay & Backbone:
- → High port count @ high throughput; Scalability

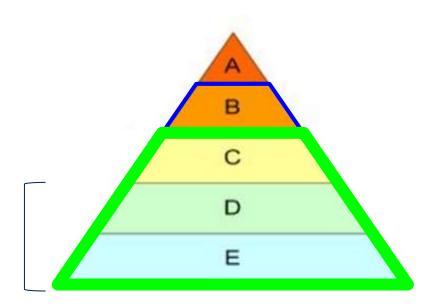
Cabin network:

→ Typically two backbone ports + Endpoint ports of different port types and sizes

Use cases require HW sourcing from multiple network market segments

New Complexity - Example 3: Switch & SW Complexity

Certification view on software for airborne systems:

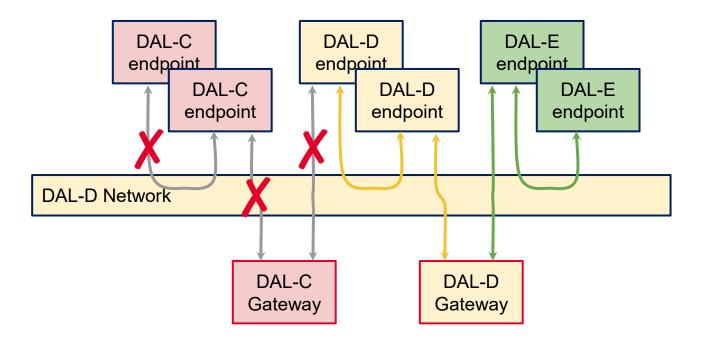

- DO-178: Software Considerations in Airborne Systems and Equipment Certification
- DO-331: Model-Based Development and Verification Supplement
- DO-332: Object-Oriented Technology and Related Techniques Supplement
- There are more ...

DAL-A is out of cabin scope

One Application: Smoke Detection

Requires dedicated OS to meet DAL-C objectives

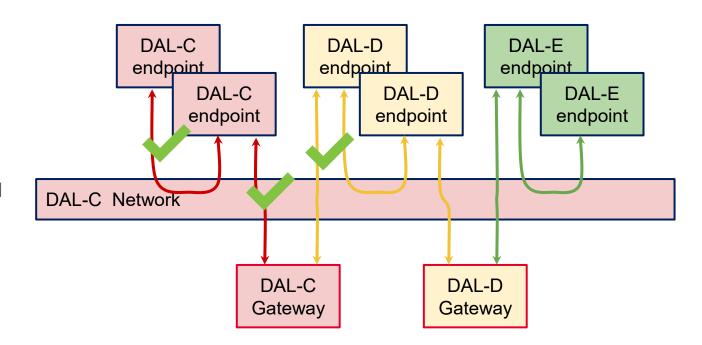
Standard COTS OS (e.g. Linux) can be reused



Goal: Identify COTS HW suitable for DAL-C certification

New Complexity - Example 3: Switch & SW Complexity

Data transmission across a shared network:



New Complexity - Example 3: Switch & SW Complexity

Data transmission across a shared network:

- Meeting DAL-C objectives means e.g.:
 - Requirements based code coverage
 - Independent checking & testing
- ⇒ Typical COTS switch SOCs are feature rich and based OS's where DAL-C certification is way too complex!
- ⇒ We need a certifiable OS & application SW!
- ⇒ And we need to keep it simple / fit for purpose!

High DAL certifiable SW is an asset!

In a nutshell

Performance without sacrificing SWaPC

Stable protocols & scalable interfaces with less obsolescence hassles expected

Complex technology requires standardization - 802.1DP / SAE AS6675 is important

COTS components require an aerospace (SW) finishing - Aerospace specific challenges still exist

The network will be seen as a independent system providing services to other systems

Thank you