P802.1ASds

Proposed resolutions for comments #7/5,
40, and #/4 against P802.1ASds-D0.1

Silvana Rodrigues (Editor)
(Huawei Technologies Co., Ltd.)
IEEE 802.1 Plenary meeting
March 2023

Acknowledgment

* The proposed resolutions for comments #75, #40, and #74 are the
collaborative work of:

* Geoff Garner (ADI)

e Martin Ostertag (zhaw)
Olaf Mater (Marvell)
Adriaan Niess (Bosch)
Don Pannell (NXP)
Max Turner (Ethernovia)
Christian Boiger (Infineon.com)
Martin Mittelberger (Siemens)
Woojung Huh (Microchip)
Silvana Rodrigues (Huawei)

Pdelay Messages are initiated by
the TimeReceivers only

End PTP Relay
Station

Instance
TR TT

Pdelay_Resp

Pdelay Req

Pdelay Req Pdelay_Resp

* For 802.1ASds, the initiator for Pdelay
messages is the End Station.
TimeReceiver sends Pdelay_Req

* timeTranmitter does not send
Pdelay Reqg

]

revd PdelayResp = FALSE;

if lostRy <= allowedLostR
losResponses #=1;

alse

1

RESET

isMeasuringDelay = FALSE;
asCapableAcrossDomains = FALSE;
}

BEGIN || \portOper || !portEnabled0

NOT_ENABLED

INITIAL_SEND_PDELAY _REQ

revd PdelayResp = FALSE;

asCap

currentTime - pdelaylnterval Timer >=
p— pdelayReginerval

pdelayRegSequenceld += 1;

txPdelayReqPr = setPdelayReq();
PdelayReq(PdelayRegPrr),
pdelaylntervalTimer = cumentTime;

SEND_PDELAY REQ

dPdelayRespFalowlp = FALSE,

revdMDTimestamp ReceiveMDP Rag =
FALSE;
pdelayReqSaquenceld = random);
P delayRegPir = setPdelayReq(),
xPdelayReq(bP delayReqPt),
pdelay|ntervalTimer = cumentTime;

asCapableAcrassDomains = FALSE,

revdMDTime stampReceiveM DPReq ;

\1 revdMDTimeslampReceiveM DPReg

WAITING_FOR_PDELAY_RESP

revdMDTimestampReceveMDPReq = FALSE,

]
(cumentTima - pdelayiniervalTimer >= pdelayRegintenal) ||

(revdPdalayResp &&
{ (revdPdelayRespPr->reguestingP ortldentity clockidentity != thisClock) ||
i pPtr-: X I= thisPorf) ||
(revdPdelayRespPr: 1= bePdelayRegPt-

revd PdelayResp &8

Pt
(revdF pPr- rtident;

WAITING_FOR_PDELAY_RESP_FOLLOW_UP

revdPdelayResp = FALSE;

{curen(Time - pdelayintervalTimer >=
pdelayReginterval) || (revdPdelayResp 88
(revdPdelayRespPr->sequenceld =
wPdalayReqPr->sequenceld)) ||
(revdPdelayRespFallowUp &&

{ (revdPdelayRespFolowUpPr W=

revdPdelayRespFollowUp &8

(revd PdelayRespFallowUpPir->sequenceld == txPdelayReq Pr->sequanceld) &&
(rewdPdelayRespFallowUpPir- y ==
revdPdelayRespPtr->sourcePaortidentity ||

(rewd PdelayRespPir->requesting Portident ty. clockl dentity == thisClock &&

revd PdelayR espPir->requestingPortidentity. porthumber == thisPort))
A

wPdalayReqPy->sequenceld) ||
dPdalayResoFallowlin Pir- =

WAITING_FOR_PDELAY_INTERVAL_TIMER

(o
revdPdel ayResp Pir->source Porddentity ||
{revdPdelayRespPir clacklde

ntity 1= thisClock || If (tasymmetryMeasureme nthode)

revdPdeal ayRespPtr-

>requestingPortidentity portNumber 1= thisPort)))) if [compuieNeighborRateRato)
nrPdelay = computeP delayRateRatiof),

if {rompute MeanLinkDelay)

isMeasuringDelay =TRUE;

detededFaults = 0;

thisClock)
{

detected Faults = 0;
+

else

decledFaulls += 1;
else

{

descledFaulis = 0;
}
}

revdPdelayRespFallowUP = FALSE,
R -

mearLinkDelay = computePropTime();
if {{meanLinkDelay <= meanLinkDelayThresh) &%
(revd PdelayRespPir->sourcePord dentity clockidentity 1=
thisClock) && nrPdelayValid)
asCapableAcrossDomains = TRUE;
alsa if (revdPdelayRespPr->souros Portidentity. clockidentity ==

asCapableAcossDomains = isMeasuringDelay = FALSE,

if (detectedFaults <= allowedFaults)

asCapableAcrossDomains = isMeasuringDelay = FALSE;

cumen(Time - pdelayk Timer >=
pdelayReqinterval

= 1. T MDPdelayReq state machine
for timeReceiver

revdPdelayResp = FALSE;
if (lostR: <= allowedLostR
losResponses +=1;

alse - o

{ I : 1
isMeasuringDelay = FALSE; 1 A —
asCapableAcroseDomains = FALSE; INITIAL SEND PDELAY REQ

. . | !

1

revd PdelayResp = FALSE;
revd PdelayRespFoliowUp = FALSE,
nrPdeday = 1.0;
revdMDTimestamp ReceiveMDPReq =
FALSE;

currentTime - pdelaylnterval Timer >=
p— pdelayReginerval

e * pdelayReqgSendDisabled is FALSE

pdelaylntervalTimer = cumentTime;

pdelayReqSequenceld = 1; lostResponses = 0;
txPdelayReqPt = setPdelayReq(); dewcedFaults =0;
xPdelayReq(uPdalayRegPr); tsMeasuringDelay = FALSE;

pdelaylntervalTimer = cumentTime; asCapableAcrossDomains = FALSE;

oy i * The state machine runs normally:

WAITING_FOR_PDELAY_RESP

AsCapableAcrossDomains is set TRUE or

]
{cumantTime - pdalayinervalTimer >= pdalayReaqlntanal) || evdPdela &8 . N
(rovdPdalayFinsp B8 [rmdeeelaﬁ:;pplesequemeld == xPdelayReqPlr->sequenceld) &8
{ (revdP dalayRespPr->requadingP ortldentity clockidentty != thisClock] || {rovdPdelayRespPr- Bartid 1 == thisClock) && e e n I n O n e eXe C u I O n O
- " P q 2
; 1:1 : ":,l" = Py ReaPY: 1= thisPorl || (rovd PdelayRespPu->requesting Portidentity. porthumber == thisPart) ‘
pPr- = qP Y- 1]
3

WAITING_FOR_PDELAY_RESP_FOLLOW_UP

state machine at the
i “WAITING_FOR_PDELAY_INTERVAL_TIMER”

(i -
5 revd PdelayRespPtr->sourcePortidentity ||
b&i?jeplizzezﬁ’-?gcxﬂms\z; U (rcvd PdelayResp Pir->requesting Portlden fity. clockl dentit;
o DA 4 ﬁ” - EpPlr- Wi= revd PdedayR espPtr>requestngPortidentity. portMumber == thisPort))

(p
?‘PﬁlﬁyRef“’:—mwﬂfgﬁf.” — WAITING_FOR_PDELAY INTERVAL_TMER St a t e

revdPdal ayResp Pr->source Poridentty || revd PdelayRespFollowUP = FALSE,
(revdPdelayRespP R -

thisClock &&

P clockide =0;
ntity 1= thisClock || If (tasymmetryMeasuremanthode)
revdPdal ayRespPtr-
>requestingPortidentity. portNumber 1= thisPort)))) if [computeNeighborRateRatio)

nPdelay = computePdel ayRate Ratiof),
if joomputeMeanLinkDelay)
mearnLinkDelay = compuePropTime();
isMeasuringDelay =TRUE;
if ((meanLinkDelay <= meanL inkDelayThresh) &&
(revd PdelayRespPir->sourceP ortl dentity ¢l ockidentity 1=
thisClock) 8& nPdelayValid)

asCapableAcrossDomains = TRUE;
detectedFaults = 0;
3

}
alse if (revdP dalayRespPr->souros Portidentity clockldentity ==
thisClock)

asCapableAmassDomains = isMeasuringDe lay = FALSE,
detectedFaults = 0;
3
}
alse
if (detected Faults <= allowedFaults)
dewciadFaulls += 1;
eise
{
asCapableAcrossDomains = isMeasuring Delay = FALSE;
desciadFauits = 0;
)

H
3
1

cumen(Time — pds Mimer >=

pdelayReginterval

Figure 11-9—MDPdelayReq state machine

Clause 11.2.2 works for timeReceiver, no changes are needed

11.2.2 Determination of asCapable and asCapableAcrossDomains Table 11-1—Value of meanLinkDelayThresh for various links
There is one instance of tl_le global variable asCapable .(see 10.2.5.1) per PTP Port, per do.main. There is one Link Value of meanLinkDelayThresh (ns) (see NOTE)
instance of the global variable asCapableAcrossDomains (see 11.2.13.12), per port, that is common across,
and accessible by, all the domains. 100BASE-TX, 1000BASE-T 8009
. . o 8 . L00BASE-FX, 1000BASE-X FFFF FFFF FFFF FFFF FFFF FFFE
The per-PTP Port global variable asCapable (see 10.2.5.1) indicates whether the IEEE 802.1AS protocol is 1
operating, in this domain, on the PTP Link attached to this PTP Port, and can provide the time- NOTE—The actual propagation delay for 100BASE-TX and 1000BASE-T links is expected to be smaller
synchronization performance described in B.3. asCapable is used by the PortSync entity, which is media- than the above respective threshold. If the measured mean propagation delay (i.e., meanLinkDelay;

see 10.2.5.8) exceeds this threshold, it is assumed that this is due to the presence of equipment that does not
implement gPTP. For 100BASE-FX and 1000BASE-X links, the actual propagation delay can be on the order
of, or larger than, the delay produced by equipment that does not implement gPTP: therefore, such equipment

The per-port global variable asCapableAcrossDomains is set by the MDPdelayReq state machine cannot be detected by comparing measured propagration delay with a threshold. In this case,
(see 11.2.19 and Figure 11-9). For a port attached to a full-duplex point-to-point PTP Link, meanLinkDelayThresh is set to the largest possible value (i.e.. all 1s).

asCapableAcrossDomains shall be set to TRUE if and only if it is determined, via the peer-to-peer delay
mechanism, that the following conditions hold for the port:

independent; however, the determination of asCapable is media-dependent.

The per-PTP Port, per-domain global variable asCapable shall be set to TRUE if and only if the following

. . oy . conditions hold:
a) The port is exchanging peer delay messages with its neighbor,

b) The measured delay does not exceed meanLinkDelayThresh, e) The value of asCapableAcrossDomains is TRUE, and
¢) The port does not receive multiple Pdelay Resp or Pdelay Resp Follow Up messages in response f) One of the following conditions holds:
to a single Pdelay_Req message, and 1) The value of neighborGptpCapable for this PTP Port is TRUE, or
d) The port does not receive a response from itself or another PTP Port of the same PTP Instance. 2) The value of domainNumber is zero, and the value of sdold for pker delay messages received

on this PTP Port 1s 0x100.

NOTE 1—If a PTP Instance implements only domain 0 and the MDPdelayReq and MDPdelayResp state machines are
invoked on domain 0 (see 11.2.19), asCapableAcrossDomains is still set by the MDPdelayReq state machine. ° At th e timeReceiver pO rt, |f d Sca pa b I eAC rossDomainsis TR U E,

‘ ‘ . . then item e) is satisfied.
The default value of meanlinkDelayThresh shall be set as specified in Table 11-1.

* Itemf) 1) is satisfied because both GptpCapableTransmit and
GptpCapableReceive state machines shall be disabled, and

* At the timeReceiver port, if items a), b), c), and d) are according to Asdm, neighborGptpCapable is set to TRUE

satisfied then asCapableAcrossDomains is TRUE _
* Therefore, asCapable is set to True

* Atthe FlmeRecelver port, if items a), b), C)’ a_nd d) are * At the timeReceiver port, if asCapableAcrossDomains is FALSE,
not satisfied then asCapableAcrossDomains is FALSE the asCapabile is set to FALSE, as item e) is not satisfied

]

RESET

BEGIN | 'portOper || \portEnabled0

revdPdelayResp = FALSE;
if (lostR: <= allowedLostR

losResponses +=1;
else

{
isMeasuringDelay = FALSE;
asCapableAcrossDomains = FALSE;
)
1

NOT_ENABLED

INITIAL_SEND_PDELAY REQ

currentTime - pdelaylnterval Timer >=

P, W —l pdelayReginerval

SEND_PDELAY REQ

pdelayRegSequenceld += 1,
tcPdelayReqPtr = setPdelayReq(),
xPdelayReq uPdelayReqPr),
pdelaylntervalTimer = curment Time;

revd PdelayResp = FALSE;
revd PdelayRespFoliowUp = FALSE,
nrPdeday = 1.0;

revdMDTimestamp ReceiveMDPReq =
FALSE;

pdalayRegSaquenceld = random();
P delayReqPtr = setPdelayReq();
xPdelayReq (P delayReqPt)
pdelaylntervalTimer = cumentTime;
lostResponses = 0;
delecidFaults =0;
isMeasuringDelay = FALSE;
asCapablecrossDomains = FALSE;

revdMDTimestampReceiveM DPReq ;

_¢ revdMDTimestampRe ceiveM DPReq

WAITING_FOR |

PDELAY_RESP

rovd MDTimestampReceivaMDPReq = FALSE,

{revdPdelayResp 8&

[o
{revdPdelayRespPir- 1= PdelayReqPl-

{cumentTime — pdelayiniervalTimer >= pdelayReglnteral) ||

{ (revdPdelayRespPy->requedtingP ortldentity clockidentity != thisClock) ||
o PdelayRespP1r-

1= thisPort) ||

I

k.

revdPdalayResp 88

(rovd PdelayRespPur->sequenceld == txPdelayReqPir- >sequenceld) &8
{rovdPdelayRespPir->req Portidentity clockld = thisClock) 88
(revd PdedayRespPu->reguesting Portidentity. portNumber == thisPaort)

WAITING_FOR_PDELAY_RESP_FOLLOW_UP

revdPdelayResp = FALSE,

{curen(Time - pdelayintervalTimer >=
pdelayReginterval) || (revdPdelayResp 88
{revdPdelayRespPt->sequenceld =
wPdalayReqPr->sequenceld)) ||
(revdPdelayRespFallowUp &&

(rcvdP delayRespFolowUpPr W=

revdPdelayRespFollowlUp 88
APdelayResp FoilowUpPir-
xiPdelayRespFolowUpPir- P =

(r
revd PdelayRespP tr->sourcePortl dantity ||

Bortld: =

WAITING_FOR_PDELAY_INTERVAL TIMER

[
wPdalayReqPr->sequenceld) ||
{rovePdelayRespFollowUpPtr->

revdPdal ayResp Pr->source Poridentty ||
(revdPdelayRespP

revd PdelayRespFollowUP = FALSE,
R -

pPir clodklde
ntity 1= thisClock ||
revdPdelayRespPir-
>requestingPortidentity porthum ber 1= tisPort))))

\
}
alse

eise

{

H
3
1

If (tasymmetryMeasuremanthode)

if [computeNeighborRateRatio)
nPdelay = computePdel ayRate Ratiof),
if joomputeMeanLinkDelay)
mearnLinkDelay = compuePropTime();
isMeasuringDelay =TRUE;
if ((meanLinkDelay <= meanL inkDelayThresh) &&
(revd PdelayRespPir->sourceP ortl dentity ¢l ockidentity 1=
thisClock) 8& nPdelayValid)

asCapableAcrossDomains = TRUE;
detectedFaults = 0;
3

}
alse if (revdP dalayRespPr->souros Portidentity clockldentity ==
thisClock)

asCapableAmassDomains = isMeasuringDe lay = FALSE,
detected Faults = 0;

if (detected Faults <= allowedFaults)
dewciadFaulls += 1;

asCapableAcrossDomains = isMeasuring Delay = FALSE;
desciadFauits = 0;
)

cumen(Time — pds Mimer >=

pdelayReginterval

Figure 11-9—MDPdelayReq state machine

== txPdelayReqPir->sequenceld) &8

thisClock &&
revd PdedayR espPtr>requestngPortidentity. portMumber == thisPort))

MDPdelayReq state machine
for timeTransmitter

pdelayReqSendDisabled is TRUE

* The state machine goes to
“SET_AS CAPABLE_ACROSS_DOMAINS” state
and sets AsCapableAcrossDomains to TRUE

* timeTransmitter does not send Pdelay Req,

* Pdelay Resp are not received at the timeTransmitter
for HDE
* No need to check whether or not Pdelay_Resp are

received or meanLinkDelayThresh is exceeded, as
timeTransmitter port does not measure meanlLinkDelay

Clause 11.2.2 works for timeTransmitter

11.2.2 Determination of asCapable and asCapableAcrossDomains

There is one instance of the global variable asCapable (see 10.2.5.1) per PTP Port, per domain. There is one
instance of the global variable asCapableAcrossDomains (see 11.2.13.12), per port, that is common across,
and accessible by, all the domains.

The per-PTP Port global variable asCapable (see 10.2.5.1) indicates whether the IEEE 802.1AS protocol is
operating, in this domain, on the PTP Link attached to this PTP Port, and can provide the time-
synchronization performance described in B.3. asCapable is used by the PortSync entity, which is media-
independent; however, the determination of asCapable is media-dependent.

The per-port global variable asCapableAcrossDomains is set by the MDPdelayReq state machine
(see 11.2.19 and Figure 11-9). For a port attached to a full-duplex point-to-point PTP Link,
asCapableAcrossDomains shall be set to TRUE if and only if it is determined, via the peer-to-peer delay
mechanism, that the following conditions hold for the port:

a) The port is exchanging peer delay messages with its neighbor,
b) The measured delay does not exceed meanLinkDelayThresh,

c) The port does not receive multiple Pdelay Resp or Pdelay Resp Follow Up messages in response
to a single Pdelay_Req message, and

d) The port does not receive a response from itself or another PTP Port of the same PTP Instance.

NOTE 1—If a PTP Instance implements only domain 0 and the MDPdelayReq and MDPdelayResp state machines are
invoked on domain 0 (see 11.2.19), asCapableAcrossDomains is still set by the MDPdelayReq state machine.

The default value of meanlinkDelayThresh shall be set as specified in Table 11-1.

* At the timeTransmitter port, asCapableAcrossDomains is
set to TRUE by the state machine

» At the timeTransmitter port, items a), b), c), and d) are
not applicable, as the state machine sets
asCapableAcrossDomains to TRUE. Need a small
modification of clause 11.2.2, see slide 9.

Table 11-1—Value of meanLinkDelayThresh for various links

Link Value of meanLinkDelayThresh (ns) (see NOTE)

100BASE-TX. 1000BASE-T 800y,

100BASE-FX, 1000BASE-X FFFF FFFF FFFF FFFF FFFF FFFF ¢

NOTE—The actual propagation delay for I00BASE-TX and 1000BASE-T links is expected to be smaller
than the above respective threshold. If the measured mean propagation delay (i.e., meanLinkDelay;
see 10.2.5.8) exceeds this threshold, it is assumed that this is due to the presence of equipment that does not
implement gPTP. For 100BASE-FX and 1000BASE-X links, the actual propagation delay can be on the order
of, or larger than, the delay produced by equipment that does not implement gPTP: therefore, such equipment
cannot be detected by comparing measured propagation delay with a threshold. In this case,
meanLinkDelayThresh is set to the largest possible value (i.e.. all 1s).

The per-PTP Port, per-domain global variable asCapable shall be set to TRUE if and only if the following
conditions hold:

e) The value of asCapableAcrossDomains is TRUE, and
f) One of the following conditions holds:
1) The value of neighborGptpCapable for this PTP Port is TRUE, or
2) The value of domainNumber is zero, and the value of sdold for pker delay messages received
on this PTP Port is 0x100.
* At the timeTransmitter port, asCapableAcrossDomains is
set to TRUE, item e) is satisfied.

* ltem f) 1) is satisfied because both GptpCapableTransmit
and Gp;cijapabIeReceive state machines shall be
disabled, and according to Asdm, neighborGptpCapable
is set to TRUE

Therefore, asCapable is set to True

* At the timeTransmitter port, asCapableAcrossDomains
and asCapable are always TRUE for HDE

]

BEGIN || 'portOper || 'pontEnabled(

RESET

NOT_ENABLED

revdPdelayResp = FALSE;
if (lostRy <= allowedLs

o

losResponses +=1;
else
{
isMeasuringDelay = FALSE;

1

asCapableAcrossDomains = FALSE;
)

rOper && poriEnabled) l

INITIAL_SEND_PDELAY REQ

revd PdelayResp = FALSE;

o

currentTime - pdelaylnterval Timer >=
pdelayReginerval

revd PdelayRespFoliowUp = FALSE,
nrPdeday = 1.0;

pdalayRegSaquenceld = random();
P delayReqPtr = setPdelayReq();

SEMD_PDELAY_REQ

xPdelayReq (P delayReqPt)

pdelayRegSequenceld += 1,
tcPdelayReqPtr = setPdelayReq(),
xPdelayReq uPdelayReqPr),
pdelaylntervalTimer = curment Time;

pdelaylntervalTimer = cumentTime;
lostResponses = 0;
delecidFaults =0;
isMeasuringDelay = FALSE;

revdMDTimestamp ReceiveMDPReq =
FALSE;

asCapablecrossDomains = FALSE;

revdMDTimestampReceiveM DPReq ;

WAITING_FOR_PDELAY_RESP

rovd MDTimestampReceivaMDPReq = FALSE,

{cumentTime — pdelayiniervalTimer >= pdelayReglnteral) ||

{revdPdelayResp 8&

{ (revdPdelayRespPy->requedtingP ortldentity clockidentity != thisClock) ||
dPdelayRespPir-

revdPdalayResp 88

_¢ revdMDTimestampRe ceiveM DPReq

(rovd PdelayRespPur->sequenceld == txPdelayReqPir- >sequenceld) &8
irovdPdelayResoPt Portid ok

[o

{revdPdelayRespPir- 1= tePdk

1= thisPort) ||

ReqPt- I

k.
WAITING_FOR_PDELAY_RESP_FOLLOW_UP

revdPdelayResp = FALSE,

{curen(Time - pdelayintervalTimer >=
pdelayReginterval) || (revdPdelayResp 88
{revdPdelayRespPt->sequenceld =
wPdalayReqPr->sequenceld)) ||
(revdPdelayRespFallowUp &&

revdPdelayRespFollowlUp 88

(rcvdPdelayResp Pis

{rcvdP delayRespFallowUpPtr- W=
wPdalayReqPr->sequenceld) || .,
b i — WAITING_FOR_PDELAY_INTERVAL_TMER
revdPdal ayResp Pr->source Poridentty || revd PdelayRespFollowUP = FALSE,
dPdelayRespPir cloddde 1R =
(o .
ntity 1= thisClock || If (tasymmetryMeasuremanthode)
revdPdal ayRespPtr-

>requestingPortidentity. portNumber 1= thisPort))))

3
1

if [computeNeighborRateRatio)
nPdelay = computePdel ayRate Ratiof),
if joomputeMeanLinkDelay)
mearnLinkDelay = compuePropTime();
isMeasuringDelay =TRUE;
if ((meanLinkDelay <= meanL inkDelayThresh) &&
(revd PdelayRespPir->sourceP ortl dentity ¢l ockidentity 1=
thisClock) 8& nPdelayValid)

asCapableAcrossDomains = TRUE;
detectedFaults = 0;
3

}
alse if (revdP dalayRespPr->souros Portidentity clockldentity ==
thisClock)

asCapableAmassDomains = isMeasuringDe lay = FALSE,
detected Faults = 0;
3
}
else
if (detected Faults <= allowedFaults)
dewciadFaulls += 1;
else

{
asCapableAcrossDomains = isMeasuring Delay = FALSE;
desciadFauits = 0;

)

H

cumeniTime - pdelayk Mimer >=
pdelayReginterval

Figure 11-9—MDPdelayReq state machine

== thisClock) &5

[pPlreg g
(revd PdedayRespPu->reguesting Portidentity. portNumber == thisPaort)

(revdPdelayResp FollowUpPtr->sequenceld == txPdelayReq Pir->sequenceld) &8
(rcvdPdelayResp FollowUpPtr->sourcePortidentity ==

revd PdelayRespP tr->sourcePortl dantity ||

requesting Portidenfity. clockldentity == thisClock &&
revd PdedayR espPtr>requestngPortidentity. portMumber == thisPort))

MDPdelayReq state machine
when pdelayReqgSendDisabled is
TRUE at the timeReceiver and at
the timeTransmitter

pdelayRegSendDisabled is TRUE

* The state machine goes to
“SET_AS_CAPABLE_ACROSS DOMAINS” state
and sets AsCapableAcrossDomains to TRUE

e timeTransmitter and timeReceiver do not send
Pdelay Req
* Transport-specific peer-to-peer dealy mechanism is
not used

* No need to check whether or not Pdelay_Resp are
received or meanLinkDelayThresh is exceeded, as there
is no measurement done for meanLinkDelay

Clause 11.2.2 works for timeTransmitter and timeReceiver when pdelayRegSendDisabled is

TRUE for both

11.2.2 Determination of asCapable and asCapableAcrossDomains

There is one instance of the global variable asCapable (see 10.2.5.1) per PTP Port, per domain. There is one
instance of the global variable asCapableAcrossDomains (see 11.2.13.12), per port, that is common across,
and accessible by, all the domains.

The per-PTP Port global variable asCapable (see 10.2.5.1) indicates whether the IEEE 802.1AS protocol is
operating, in this domain, on the PTP Link attached to this PTP Port, and can provide the time-
synchronization performance described in B.3. asCapable is used by the PortSync entity, which is media-
independent; however, the determination of asCapable is media-dependent.

The per-port global variable asCapableAcrossDomains is set by the MDPdelayReq state machine
(see 11.2.19 and Figure 11-9). For a port attached to a full-duplex point-to-point PTP Link,
asCapableAcrossDomains shall be set to TRUE if and only if it is determined, via the peer-to-peer delay
mechanism, that the following conditions hold for the port:

a) The port is exchanging peer delay messages with its neighbor,
b) The measured delay does not exceed meanLinkDelayThresh,

c) The port does not receive multiple Pdelay Resp or Pdelay Resp Follow Up messages in response
to a single Pdelay_Req message, and

d) The port does not receive a response from itself or another PTP Port of the same PTP Instance.

NOTE 1—If a PTP Instance implements only domain 0 and the MDPdelayReq and MDPdelayResp state machines are
invoked on domain 0 (see 11.2.19), asCapableAcrossDomains is still set by the MDPdelayReq state machine.

The default value of meanlinkDelayThresh shall be set as specified in Table 11-1.

* At the timeTransmitter and timeReceiver ports,
asCapableAcrossDomains is set to TRUE by the state machine (as
pdelayReqSendDisabled is TRUE on both ports)

At the timeTransmitter port and timeReceiver port (when
pdelayReqgSendDisabled is TRUE), items a), b), c), and d) are not
applicable, as the state machine sets asCapableAcrossDomains to
TRUE. Need a small modification of clause 11.2.2, see slide 9.

Table 11-1—Value of meanLinkDelayThresh for various links

Link Value of meanLinkDelayThresh (ns) (see NOTE)
100BASE-TX, 1000BASE-T 800y,
100BASE-FX, 1000BASE-X FFFF FFFF FFFF FFFF FFFF FFFF ¢

NOTE—The actual propagation delay for I00BASE-TX and 1000BASE-T links is expected to be smaller
than the above respective threshold. If the measured mean propagation delay (i.e., meanLinkDelay;
see 10.2.5.8) exceeds this threshold, it is assumed that this is due to the presence of equipment that does not
implement gPTP. For 100BASE-FX and 1000BASE-X links, the actual propagation delay can be on the order
of, or larger than, the delay produced by equipment that does not implement gPTP: therefore, such equipment
cannot be detected by comparing measured propagation delay with a threshold. In this case,
meanLinkDelayThresh is set to the largest possible value (i.e.. all 1s).

The per-PTP Port, per-domain global variable asCapable shall be set to TRUE if and only if the following
conditions hold:

e) The value of asCapableAcrossDomains is TRUE, and
f) One of the following conditions holds:
1) The value of neighborGptpCapable for this PTP Port is TRUE, or

2) The value of domainNumber is zero, and the value of sdold for pker delay messages received
on this PTP Port is 0x100.

At the timeTransmitter port and timeReceiver port (when
pdelayReqgSendDisabled is TRUE), asCapableAcrossDomains is
set to TRUE, item e) is satisfied.

Item f) 1) is satisfied because both GptpCapableTransmit and
GptpCapableReceive state machines shall be disabled, and
according to Asdm, neighborGptpCapable is set to TRUE

Therefore, asCapable is set to True

At the timeTransmitter port and timeReceiver port (when
pdelayReqgSendDisabled is TRUE), asCapableAcrossDomains
and asCapable are always TRUE

Resolution for Comment #75 and #40

19.2.2 Determination of asCapable and asCapableAcrossDomains

Delete the editor’s note and add the following text:

“Determination of asCapable and asCapableAcrossDomains is described in 11.2.2.”

Modify 11.2.2 as follows (green - text is added, red — text that is removed)

There is one instance of the global variable asCapable (see 10.2.5.1) per PTP Port, per domain. There is one instance of the global variable
asCapableAcrossDomains (see 11.2.13.12), per port, that is common across, and accessible by, all the domains.

The per-PTP Port global variable asCapable (see 10.2.5.1) indicates whether the IEEE 802.1AS protocol is operating, in this domain, on the PTP Link

attached to this PTP Port, and can provide the required time-synchronization performance reguirementperfermance-deseribed-in-B-3. asCapable is used
by the PortSync entity, which is mediaindependent; however, the determination of asCapable is media-dependent.

The per-port global variable asCapableAcrossDomains is set by the MDPdelayReq state machine (see 11.2.19 and Figure 11-9). For a port attached to a
full-duplex point-to-point PTP Link or to an HDE link, asCapableAcrossDomains shall be set to TRUE if and only if either:

1) It # is determined, via the peer-to-peer delay mechanism, that the following conditions hold for the port:
a) The port is exchanging peer delay messages with its neighbor,
b) The measured delay does not exceed meanLinkDelayThresh,
c) The port does not receive multiple Pdelay_Resp or Pdelay _Resp_Follow_Up messages in response to a single Pdelay Req message, and
d) The port does not receive a response from itself or another PTP Port of the same PTP Instance.

or:

2) pdelayReqgSendDisabled is set to TRUE

Editor’s note: Note that the rest of Clause 11.2.2 are kept as in 802.1AS-2020 (except for renumbering the items e) and f)), it was not copied here as the font would be too small to fit in one slide.

Modify the note in 10.2.5.1 as follows:

“....Itis computed by the MDPdelayReq state machine (see 11.2.19). For full-duplex point-to-point and HDE links (see 11), asCapableAcrossDomains is
used ...”

Resolution for Comment #74

19.2.13.12 asCapableAcrossDomains
Delete the editor’s note and add the following text:
“asCapableAcrossDomains is described in 11.2.13.12.”

Modify 11.2.13.12 as follows (green - text is added)

A Boolean that is TRUE if and only if either: 1) conditions a) through d) of
11.2.2 are satisfied, or 2) pdelayRegSendDisabled is set to TRUE . This
Boolean is set by the MDPdelayReq state machine and is used in
determiningasCapable for a port (see 11.2.2). There is one instance of this
variable for all the domains (per port). The variable is accessible by all the
domains. When only one domain is active, asCapableAcrossDomains is
equivalent to the variable asCapable (see 10.2.5.1).

Thank you!

