IMPACT OF MACSEC ON ETHERNET TRAFFIC LATENCY AND PTP TIMESTAMPING ACCURUCY

Ulf Parkholm – Ericsson

Latency sensitivity of Ethernet traffic in fronthaul

Time constants typically for 3GPP signaling is Slot level 1 ms, e.g. HARQ-loop

1-15 km fiber (possibly up to 30 km in the future)

Test setup

- Data collected using RTL (Register-Transfer Level) simulation tool, cycle accurate simulation for ASIC and FPGA, [fs] resolution (result data on page 5 has been rounded to closest 0,5ns)
- Simulation chosen over real-life measurement to allow isolation of MACsec contribution, portability and repeatability of test data collection
- Measurement presented taken from an <u>existing SOC</u>, and is accurate value of an real world delay of a IEEE 802.1AE MACsec implementation
- Test was repeated on multiple SOC and MACsec IP generations with similar or lower result

DUT and TestBench architecture

1500byte Pkt size

Randomized IPG

Port Speed 25Gbps

100 frames

Ingress {TimeA = T2 - BaseLine T1}

Egress {TimeA = T3 - BaseLine T3}

The applicable Ingress or Egress Tuple of timing data are captured for each Ethernet frame

Delay measurement result

*The delay for no MACsec in above SOC is estimated to be 10ns, due to physical placement of functions in silicon

Conclusion

Delay of fiber is ~5ns / m

Delay of controlled MACsec flow Egress + Ingress

212ns ~42 meter's of fiber

MACsec delay addition < Fiber distance of Fronthaul

MACsec delay addition <<<< Time constant of 3GPP signaling

Synchronization Plane

• The synchronization plan implemented with PTP IEEE 1588 is important to distributed phase and time in the fronthaul network

- ITU-T Recommendation G.8273.2, Timing characteristics of telecom boundary clocks and telecom slave clocks.
 - cTE constant time error

• Fronthaul devices target is G.8273.2 Class C +/-10ns cTE for 5G

1588 BASICS

Timestamps known by Time Receiver

 $\mathsf{T_{1,}}\,\mathsf{T_{2,}}\,\mathsf{T_{3,}}\,\mathsf{T_{4}}$

IngressLatency and egressLatency needs to be measured or estimated to maintain a sufficiently low RX and TX asymmetry 8

IEEE 802.3 Timestamping

 The optional TSSI interface provides TimeClient with timing information on a per frame

PHY may be restricted to send
Timestamp packets on fixed
positions with known TSSI values

Some IEEE 802.3 rates and technologies would fail to meet ITU-T G8273.2 Class C without the TSSI information, see IEEE 802.3CX taskforce CFI

Improving PTP Timestamping Accuracy on Ethernet Interfaces Call For Interest Consensus Presentation (ieee802.org)

2-step

 TSSI to frame reconciliation and filtering may be done in SW, FW or HW, position is design choice

 Based on recorded TSSI with offline processing for Follow_up and Delay_Responce Frames

1-step

 TSSI to frame reconciliation and filtering may be done in SW, FW or HW, position above SecY

- Ingress: Based on recorded TSSI with offline processing for Sync and Frames
- Egress: Based on estimation of future TSSI for processing of Sync and Delay_Responce Frames

Conclusion

IEEE 802.1AE is orthogonal to the needs to support high accuracy PTP with a IEEE 802.3 PHY and MAC

There are multiple implementations to allow propagation and reconciliation of Ethernet frame and TSSI in time sync client

Summary

With correct design and system consideration IEEE 802.3AE MACsec doesn't impact Ethernet Fronthaul latency

With correct design and system consideration IEEE 802.3 MACsec doesn't impact PTP accuracy and precision