
Representing Rational
Numbers in YANG

Better alternatives to Float

Don Fedyk
dfedyk@labn.net

12/3/2024 IEEE 802.1 Yangsters

How did we end up here?

• YANG Example from dot1as YANG
• Two Cases

• Used for UScaledNs unsigned values of time and time interval in units
of 2^-16 ns
• What is the required range of this value?

• Other Rational numbers Frequence and Refractivity

Let's examine these…

Note we have come a long way from when I first made comments,
Also, comments in here are the opinion of the author.

12/3/2024 IEEE 802.1 Yangsters

Some use Double Precision Float in YANG

• How do we display ? - Double precision float – typedef float64
• 1 bit sign 11 bits exponent and 52 bits of mantissa

• 1 Nanosecond is = 0x3E112E0BE826D695 Hex (8 octets Float64)
• 1 UscaledNs = 0x3D112E0BE826D695 Hex (8 octets Float64)

• At one time we used this for UScaled-ns now have another type for
Uscaled-ns (more on that).

• In a Regex HEX string as 3E-11-2E-0B-E8-26-D6-95
• I don’t think this is very good because readability is poor, and the

float range is terribly large

12/3/2024 IEEE 802.1 Yangsters

IEEE 784 Double Precision Range.

Frequency Change

EPON Refractivity

The world only uses a tiny fraction of the double precision float.
IEEE float uses an even smaller space!

Number of Atoms in the
Universe 10^82

Planck Length 1.6 10^-35

12/3/2024 IEEE 802.1 Yangsters

Floating point in YANG

• YANG does not support floating point directly
• YANG supports strings, binary, integers and fixed-point decimal

• Ranges and some validation can happen on some these items
• Integer and fixed-point decimal are understood by directly by YANG

• IEEE and IETF Standards have incorporated Floating-point in some Modules
• Either as:

• Strings in regex (Mantissa and Sign)
• Hex representations of IEEE 754 Float
• Binary Base64 – Not used anymore Yeah!

• These representations have limited validation options and are not easily human
comprehensible. (we can read them but can't easily compare them for example).

• Floats don’t Render Well. All representations of floating point numbers are UGLY.
• This presentation suggest an alternative to floating point that leverages fixed-

point decimal as a better alternative for the objects represented.

12/3/2024 IEEE 802.1 Yangsters

UScaled Nanoseconds

• Current representation is 96 bits of binary.
• This is 96 bits represented as Hexadecimal
• 1 Uscaled NS = 00-00-00-00-00-00-00-00-00-00-00-01

• 1/65536 of a nanosecond.
• BTW Who though mixing radix 2 and radix 10 was a good idea?

• 1 NS = 00-00-00-00-00-00-00-00-00-01-00-00
• 1second = 00-00-00-00-00-00-3B-9A-CA-00-00-00
• 1 year = 00-00-2B-CB-83-00-04-63-00-00-00-00
• Max = 38,398,547.532 years.
• I don’t think this is terrible. Probably 64 bits of Binary was sufficient. 96 bits

makes it more complicated.

12/3/2024 IEEE 802.1 Yangsters

YANG Decimal64

• “The decimal64 built-in type represents a subset of the real
numbers, which can be represented by decimal numerals. The
value space of decimal64 is the set of numbers that can be
obtained by multiplying a 64-bit signed integer by a negative power
of ten, i.e., expressible as "i x 10^-n" where i is an integer64 and n
is an integer between 1 and 18, inclusively.” RFC 7450

• The internal representation is effectively a 63 bit mantissa with
fixed point decimal. division by 10, 100 up to 10^18.

• This covers a linear space within a range.

12/3/2024 IEEE 802.1 Yangsters

Decimal 64 Range

More Granularity More Range

+----------------+-----------------------+----------------------+
 | fraction-digit | min | max |
 +----------------+-----------------------+----------------------+
 | 1 | -922337203685477580.8 | 922337203685477580.7 |
 | 2 | -92233720368547758.08 | 92233720368547758.07 |
 | 3 | -9223372036854775.808 | 9223372036854775.807 |
 | 4 | -922337203685477.5808 | 922337203685477.5807 |
 | 5 | -92233720368547.75808 | 92233720368547.75807 |
 | 6 | -9223372036854.775808 | 9223372036854.775807 |
 | 7 | -922337203685.4775808 | 922337203685.4775807 |
 | 8 | -92233720368.54775808 | 92233720368.54775807 |
 | 9 | -9223372036.854775808 | 9223372036.854775807 |
 | 10 | -922337203.6854775808 | 922337203.6854775807 |
 | 11 | -92233720.36854775808 | 92233720.36854775807 |
 | 12 | -9223372.036854775808 | 9223372.036854775807 |
 | 13 | -922337.2036854775808 | 922337.2036854775807 |
 | 14 | -92233.72036854775808 | 92233.72036854775807 |
 | 15 | -9223.372036854775808 | 9223.372036854775807 |
 | 16 | -922.3372036854775808 | 922.3372036854775807 |
 | 17 | -92.23372036854775808 | 92.23372036854775807 |
 | 18 | -9.223372036854775808 | 9.223372036854775807 |
 +----------------+-----------------------+----------------------+

-922337203685477580.8 922337203685477580.7

Note Current 96bit
UScaled-ns also uses a
linear range than
encompasses all of this
space.

12/3/2024 IEEE 802.1 Yangsters

Decimal64 YANG
Is it sufficient when using 18 fractional digits ?
• 1 UScaledNs = 0.0000000000000152587890625
• In Decimal64 (fraction-digits 18) = 0.000000000000015259
• Error = 0.000013824
• 1 NS = 0.000000001
• Error is zero for any number that fits exactly in 18 decimal fraction

digits or less.
• Lowest zero error value is an attosecond or quintillionth of a

second. 10^-18 or 0.000000000000000001

12/3/2024 IEEE 802.1 Yangsters

What does Decimal64 fraction-digits 18
 look like in YANG?
• 1 UScaledNs is 0.000000000000015259
• 1 Nanosecond is 0.000000001
• 1 Microsecond is 0.000001
• The representation is treated as decimal (radix 10) and Integer

decimal math can be used.
• It is displayed as decimal.
• It is human comprehensible !

12/3/2024 IEEE 802.1 Yangsters

Summary Small Number YANG Evaluation.

Numerical
Representation

Range Presentation Human
Readable

Integer
Math

YANG
Ranges ?

Error Efficiency

Float64 Insane HEX - String Not really No No Extremely Low Low

Binary 64 Practical Int or HEX string Yes Mostly Yes Yes Very Low High

Binary 96 Ridiculous Hex -String Sort of Yes No Extremely Low Medium

Decimal64 Practical Decimal Value Absolutely Yes Yes Very Low High

Almost any case where float is considered Decimal 64 is better
For Uscaled-ns it’s a toss up because it mixes radix 2 and radix 10
Although using Binary96 versus binary64 needs justification.

12/3/2024 IEEE 802.1 Yangsters

Suggestions Going forwards

• Utilizing Decimal64 and Fraction digits.
• One definition with fractions of 18
• This fits for current uses

• Epon Refractivity - 1.47 is supported directly with 18 or less fraction digits.
• Restrict Decimal64 to 18 digits of decimal fraction unsigned (or signed)

But what if we need more High-end range greater than 9 seconds along with 18 places
of decimal?

• Make a YANG typedef
• Fractional part Decimal64 fraction-digits 18 with

• Range -0. 999999999999999999 .. 0.999999999999999999
• Integer part either 8 bit, 16bit, 32bit signed.
• What if the fractional error is still considered too coarse ? The Decimal fraction becomes

milliseconds or microseconds.
• High range is a high order decimal64 with Fraction-digits 3 (or 6).

• This keeps it Human readable and linear in line with Decimal64 practices.

12/3/2024 IEEE 802.1 Yangsters

Final Thoughts

• When looking at operations per second on Float versus Integer on a
modern computer the time for a single conversion is extremely small.
So why bother?

• I have never experienced embedded devices, routers or bridges where
the Engineer said the boot time was too fast or the UI was too
responsive. But I have seen plenty of times where the boot time was
under pressure, or the UI was sluggish.

• I also have debugged many interfaces over 40 years and having to stop
to make a Base 64 or a Float conversion to a number I can understand
or compare when there is a better option just seems wrong.

12/3/2024 IEEE 802.1 Yangsters

Backup

12/3/2024 IEEE 802.1 Yangsters

Operational Complexity

• Decimal64 can be scaled from binary with simple 10 x integer
math.

• The 64 bit signed number has an associated power of 10.
• 64 bits + an exponent number 1 – 18
• Float Double precision fits into a 64 bit number. However, to do

anything with it you must use floating point operations or convert
it to integer.

• Roughly speaking Fixed point operations are about 1/10 as
complex as floating point.

12/3/2024 IEEE 802.1 Yangsters

Why avoid Floating Point Numbers?
Lets ask a computer AI!
• Precision issues: Floating-point numbers are represented as binary fractions, which can lead to

rounding errors and precision issues. This is because many decimal fractions cannot be exactly
represented as binary fractions.

• Loss of accuracy: When performing arithmetic operations on floating-point numbers, the results can be
subject to rounding errors, which can accumulate and lead to loss of accuracy.

• Comparing floating-point numbers: Due to the imprecision of floating-point numbers, comparing two
floating-point numbers for equality can be problematic. This is because two numbers that are
mathematically equal may not be exactly equal when represented as floating-point numbers.

• Speed and performance: Floating-point operations can be slower than integer operations, which can
impact the performance of your code.

• Portability issues: Floating-point representations can vary across different platforms and architectures,
which can lead to portability issues.

• Special values: Floating-point numbers have special values, such as infinity and NaN (Not a Number),
which can be tricky to handle and may lead to unexpected behavior.

• Rounding errors: Rounding errors can occur when converting between different floating-point formats,
such as when converting from a double to a float.

12/3/2024 IEEE 802.1 Yangsters

When to avoid floating-point numbers?
Lets ask a computer AI!
• Financial calculations: In financial calculations, precision is crucial. Avoid using floating-point numbers for calculations

involving money, interest rates, or investment returns.

• Scientific simulations: In scientific simulations, accuracy is critical. Avoid using floating-point numbers for calculations that
require high precision, such as in physics or engineering simulations.

• Machine learning: In machine learning, precision is important for accurate predictions. Avoid using floating-point numbers
for calculations that require high precision, such as in neural networks or deep learning models.

• Embedded systems: In embedded systems, resources are limited, and precision is critical. Avoid using floating-point
numbers for calculations that require high precision, such as in control systems or sensor data processing.

Alternatives to floating-point numbers:
• Integer arithmetic: Use integer arithmetic when possible, especially for calculations that involve whole numbers or discrete

values.
• Fixed-point arithmetic: Use fixed-point arithmetic when possible, especially for calculations that require a fixed number of

decimal places.
• Decimal arithmetic: Use decimal arithmetic when possible, especially for calculations that require high precision and

accuracy, such as in financial calculations.
• Arbitrary-precision arithmetic: Use arbitrary-precision arithmetic when possible, especially for calculations that require high

precision and accuracy, such as in scientific simulations or cryptographic applications.

12/3/2024 IEEE 802.1 Yangsters

	Slide 1: Representing Rational Numbers in YANG
	Slide 2: How did we end up here?
	Slide 3: Some use Double Precision Float in YANG
	Slide 4: IEEE 784 Double Precision Range.
	Slide 5: Floating point in YANG
	Slide 6: UScaled Nanoseconds
	Slide 7: YANG Decimal64
	Slide 8: Decimal 64 Range
	Slide 9: Decimal64 YANG Is it sufficient when using 18 fractional digits ?
	Slide 10: What does Decimal64 fraction-digits 18 look like in YANG?
	Slide 11: Summary Small Number YANG Evaluation.
	Slide 12: Suggestions Going forwards
	Slide 13: Final Thoughts
	Slide 14: Backup
	Slide 15: Operational Complexity
	Slide 16: Why avoid Floating Point Numbers? Lets ask a computer AI!
	Slide 17: When to avoid floating-point numbers? Lets ask a computer AI!

