Review of potential use cases for a potential amendment to IEC/IEEE 60802

David McCall

Intel Corporation

IEEE 802.1 Interim

2025-09-17

				Direct Copy		
Use Case Num	Use Case Name	Requirement Num	Requirement	(vs Summary)	Met in 60802?	Notes
1		1-1	Plant wide high precision Universal Time	•		
			synchronization;			
		1-2	Maximum deviation to the grandmaster time in the	•		
	Sequence of Events		range from 1 µs to 100 µs; Optional support of redundant sync masters and			
		1-3	domains;	•		
		1-4	Non-zero failover time in case of redundant universal time domains;	•		
2	Isochronous Control Loops with Guaranteed Low Latency	2-1	Strict timing and synchronization requirements.			
		2-2	Guaranteed low-latency communication.			
		3-1	Cyclic traffic pattern with relaxed timing.			
3	Non-Isochronous Control Loops	3-2	Transfer time may exceed network cycle.			
	with Bounded Latency	3-3	Communication disturbances must be signaled			
			asynchronously.			
4	Reduction Ratio of Network Cycle	4-1	Support for reduction ratio and phase parameters.			
-		4-2	Flexible network cycle time granularity.			
	Drives without Common Application Cycle	5-1	Isochronous data exchange	•		
5		5-2	Different cycles for data exchange, which are not multiples of each other			
		5-3	Independent application cycles.			
		5-4	Synchronization via network cycle.			
6	Drives without Common Application Cycle but Common Network Cycle	6-1	Shared network cycle despite differing application cycles.			
7	Redundant Networks	7-1	Support for network redundancy to ensure reliability, including ring topology.			
	High Availability	8-1	Failure must not disturb processes.			
8		8-2	Support for redundant PLCs, IOs, and network paths.			
9	Wireless	9-1	Support for cyclic and non-real-time communication over wireless.			
		9-2	Compatibility with IEEE 802.11, 802.15.1, 802.15.4, and 5G.			
10	10 Mbit/s End-Stations (Ethernet Sensors)	10-1	Support for low-speed Ethernet sensors.			
		10-2	Compatibility with POE and SPE.			
11	Fieldbus Gateway		Integration of non-Ethernet and Ethernet fieldbus			
		11-1	devices via gateways (either transparent or hidden).			
		11-2	TSN scheduling must accommodate subordinate systems.			

David McCall, Intel Corporation

			Coomplete interruption of leaves and devices			
12			Seamless integration of legacy devices.			
			(All machine internal stream traffic			
	New Machine with Brownfield	12-1	communication - stream traffic and non-stream			
	Devices		traffic - is decoupled from and protected against			
	2011003		the brownfield cyclic real-time traffic.			
			Brownfield cyclic real-time traffic QoS is preserved			
			within the TSN domain.)			
13	Mixed Link Speeds	13-1	Support for varied Ethernet speeds within the			
13	Mixed Link Speeds	13-1	same network.			
14	Multiple Isochronous Domains	14-1	Isolation and synchronization across multiple			
			domains.			
			(Isochronous real-time domains may run			
			independently, loosely coupled (start of network			
			cycle is synchronized) or tightly coupled (shared			
			working clock). They shall be able to share a cyclic			
			real-time domain.)			
45	Auto Domosiu Bustostiou	45.4	Automatic protection mechanisms for TSN			
15	Auto Domain Protection	15-1	domains.			
16	Vast Number of Connected	16-1	Scalability to support large numbers of devices.			
			All machine internal communication (stream			
			traffic and non-stream traffic) is decoupled from			
		17-1	and protected against the additional M2M traffic	•		
	Machine to Machine / Controller to Controller Communication		and vice versa.			
17		17-2	1:1 and 1:many communication relations shall be	•		
			possible.			
		17-3	Scheduling in a way that interleaved operation with			
			machine intervals is possible.	•		
	Pass-through Traffic	18-1	Internal communication must be protected from			
18			pass-through traffic.			
		18-2	Separate traffic patterns for pass-through.			
	Modular Machine Assembly	19-1	Automatic TSN communication setup upon			
19			module connection.			
19		19-2	Support for dynamic assembly in various			
			operational states.			
	Tool Changer	20.4	Added network portions must be operational			
20		20-1	within 500ms.			
20		22.2	Support for dynamic extension/removal of up to 16			
		20-2	devices.			
	Dynamic Plugging and Unplugging of Machines (Subnets)	0.5.4	Automotic TCN troffic act of formation			
21		21-1	Automatic TSN traffic setup/removal.			
		21-2	Support for thousands of AGVs with dynamic			
			traffic layouts.			
22	Energy Saving	22-1	Switching off/on plant components must not			
			disturb processes.			
		22-2	Avoid communication paths through energy-saving			
			regions.			
23	Add Machine, Production Cell or Production Line	23-1				
			Integration must not disturb existing installations.			
	Multiple Applications in a Station		Support for stations running multiple TSN traffic			
24	Using TSN-IA Profile	24-1	classes.			
					·	

David McCall, Intel Corporation 2 of 3

25	Functional Safety	25-1	Safety and standard applications must share the same TSN communication system.		
26	Machine Cloning	26-1	Unique TSN domain addressing and identification.		
		26-2	Support for isolated logical infrastructure (including for "cloned" machines").		
27	DCS Device Level Reconfiguration	27-1	Reconfiguration must not disturb communication.		
		27-2	Support for device replacement, addition, and software updates.		
28	DCS System Level Reconfiguration	28-1	System extensions and security updates must be seamless.		
		28-2	Same influencing factors as device-level reconfiguration.		
	Network Monitoring and Diagnostics	29-1	Minimize downtime.		
29		29-2	Provide diagnostics data including TSN features.		
	Diagnostics	29-3	Quick error identification and repair indication.		
30	Security	30-1	Optional support for confidentiality, integrity, availability, and authenticity.		
		30-2	Security must not interfere with real-time communication.		
31	Firmware Update	31-1	Stations must accept and store an additional firmware version without disturbance.		
		31-2	Support for bump and bumpless update strategies.		
	Virtualization	32-1	vBridge and vPort must behave like real bridge and port.		
32		32-2	Must be TSN domain members.		
		32-3	Should support multiple applications.		
33	Offline Configuration	33-1	Define device type descriptions including all managed objects.		
		33-2	Support offline machine configuration in textual form (e.g., XML).		
		33-3	Enable offline-online configuration comparison.		
		33-4	Provide mapping between XML and YANG models.		
34	Digital Twin	34-1	Enable reliable planning, development, testing, simulation, and optimization.		
		34-2	Support virtual pre-commissioning to save time and cost.		
35	Device Replacement Without Engineering	35-1	Allow mechanical replacement of failed devices without engineering tools.		
		35-2	Support replacement of end-stations, bridged end- stations, or bridges with minimal downtime.		

Y = 0
N = 0
It's Complicated = 0
TBD = 70

David McCall, Intel Corporation 3 of 3