
Source Flow Control computation & simulation

Lihao Chen (lihao.chen@huawei.com)

Lily Lv (lvyunping@huawei.com)

mailto:lihao.chen@huawei.com
mailto:lvyunping@huawei.com

2

SFC use cases before and now

• All previous discussions in Nendica (2021) and 802.1Qdw (before Feb. 2023) are about using Source Flow Control
or remote PFC in high-performance DCNs.

> The need and benefits of SFC have been presented, including simulations and theoretical calculations.

• Discussions since July 2024 are about using SFC in AIDCNs, data center networks designed for AI computing, e.g.,
AI model training and inferences.

> This presentation also focuses on SFC for AIDCN, providing use cases, computations and simulations.

• "Note: From the author's current perspective, it is coincidentally the case that SFC can address both scenarios and
can be implemented using a single protocol design."

3

Topology

Leaf
or
ToR

Leaf
or
ToR

Spine

Leaf
or
ToR

Spine

Previously used 2-layer CLOS

fold

unfold

4

Incast congestion

• Collective communications with huge bandwidth demands during AI training and inference cause N-to-1 incast, especially
Allreduce and Alltoall.

> Allreduce is commonly used in TP (Tensor Parallelism) & DP (Data Parallelism).

- Typical use case: NCCL (NVIDIA Collective Communication Library).

> Alltoall is commonly used in EP (Expert Parallelism) for MoE (Mixture of Experts) architecture.

- Typical use case: DeepEP (communication library designed by DeepSeek).

• Packet-spray load balancing is commonly used in AIDCNs. Network-based solutions require reordering at the edge bridge next
to the receiving end-station. A high degree of out-of-order packets can lead to incast congestion at the edge bridge.

• ‘Slow receiver’ sends PFC to the edge bridge.

In both scenarios, node 1 needs to receive data
ranging from hundreds of MB to hundreds of GB
from Node 2, 3, and 4 at the same time!

https://mentor.ieee.org/802.1/dcn/24/1-24-0028-04-
ICne-aicn-report-draft.pdf

https://mentor.ieee.org/802.1/dcn/24/1-24-0028-04-ICne-aicn-report-draft.pdf

5

Why SFC?

• The reaction time is extremely important!

> The DCQCN algorithm generates congestion notification at most every 50 usec and the fastest it reduce the rate is by half, therefore in the very
best case it takes two steps to reduce the rate to 1/4.

> While the bandwidth and the switch overall forwarding capacity have a Moore’s-Law-like growth, the buffer capacity does not.

• Different use case.

> DCQCN was not explicitly designed to address the on-off traffic patterns of AI collective communication. E.g., need to avoid improper speed up
during the OFF stage.

https://www.ieee802.org/1/files/public/
docs2022/new-bottorff-sfc-0322-v6.pdf

https://www.ieee802.org/1/files/public/docs2022/new-bottorff-sfc-0322-v6.pdf

6

SFC Computation

• Congestion point’s buffer usage changes after SFC triggered:

• SFC reacts on N-to-1 incast, not causing

> ①Buffer usage exceeding the PFC threshold. (SFC reaction too slow!)

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑃𝐹𝐶 − 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑆𝐹𝐶 ≥ 𝐵𝑢𝑓𝑓𝑒𝑟𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 𝛼𝑁 − 1 𝐵𝑤 × 𝑅𝑇𝑇 + 𝑡1 + 𝑡2

> ②SFC threshold still exceeded after the Pause. (SFC under-reacted! Pause time too short.)

𝐵𝑢𝑓𝑓𝑒𝑟𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 − 𝐵𝑢𝑓𝑓𝑒𝑟𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 = 𝛼𝑁 − 1 𝐵𝑤 × 𝑅𝑇𝑇 + 𝑡1 + 𝑡2 − 𝐵𝑤 × 𝑡𝑃𝐴𝑈𝑆𝐸 ≤ 0

> ③Under-utilization of bandwidth. (SFC over-reacted! Pause time too long.)

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑆𝐹𝐶 + 𝐵𝑢𝑓𝑓𝑒𝑟𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 − 𝐵𝑢𝑓𝑓𝑒𝑟𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 = 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑆𝐹𝐶 + 𝛼𝑁 − 1 𝐵𝑤 × 𝑅𝑇𝑇 + 𝑡1 + 𝑡2 − 𝐵𝑤 × 𝑡𝑃𝐴𝑈𝑆𝐸 ≥ 0

> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎𝑛𝑑 𝐵𝑢𝑓𝑓𝑒𝑟 𝑖𝑛 𝑏𝑖𝑡, 𝑁:𝑁 𝑡𝑜 1 𝑖𝑛𝑐𝑎𝑠𝑡,
1

𝑁
≤ 𝛼 ≤ 1, 𝐵𝑤:𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ, 𝑡𝑃𝐴𝑈𝑆𝐸 : 𝑃𝑎𝑢𝑠𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑆𝐹𝐶𝑀, 𝑅𝑇𝑇: 𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑖𝑝 𝑡𝑖𝑚𝑒

> 𝑡1: 𝑡𝑖𝑚𝑒 𝑛𝑒𝑒𝑑𝑒𝑑 𝑡𝑜 𝑑𝑒𝑡𝑒𝑐𝑡 𝑡ℎ𝑒 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑡𝑜 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑎𝑛𝑑 𝑠𝑒𝑛𝑑 𝑡ℎ𝑒 𝑆𝐹𝐶𝑀

> 𝑡2: 𝑡𝑖𝑚𝑒 𝑛𝑒𝑒𝑑𝑒𝑑 𝑓𝑟𝑜𝑚 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑆𝐹𝐶𝑀 𝑡𝑜 𝑠𝑡𝑜𝑝 𝑠𝑒𝑛𝑑𝑖𝑛𝑔 (𝑎𝑛𝑑 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑙𝑦 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝑝𝑟𝑜𝑥𝑦 𝑏𝑟𝑖𝑑𝑔𝑒)

Stage Description Duration Congestion point buffer

1 SFC threshold reached and SFCM sent. t1 + ½ RTT Increasing.

2 Sender PAUSE, packets still on-the-fly. t2 + ½ RTT Increasing.

3 On-the-fly drains. tPAUSE - ½ RTT Decreasing.

4 Sender resume. ½ RTT Decreasing.

5 New packets arrive. / Increasing.

buffer

time

PFC threshold

SFC threshold

stage
1&2

stage
3&4

①

②&③

7

SFC Parameter Calculation Example

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑃𝐹𝐶 − 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑆𝐹𝐶 ≥ 𝐵𝑢𝑓𝑓𝑒𝑟𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 = 𝛼𝑁 − 1 𝐵𝑤 × 𝑅𝑇𝑇 + 𝑡1 + 𝑡2

𝐵𝑢𝑓𝑓𝑒𝑟𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 − 𝐵𝑢𝑓𝑓𝑒𝑟𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 = 𝛼𝑁 − 1 𝐵𝑤 × 𝑅𝑇𝑇 + 𝑡1 + 𝑡2 − 𝐵𝑤 × 𝑡𝑃𝐴𝑈𝑆𝐸 ≤ 0

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑆𝐹𝐶 + 𝐵𝑢𝑓𝑓𝑒𝑟𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 − 𝐵𝑢𝑓𝑓𝑒𝑟𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 = 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑆𝐹𝐶 + 𝛼𝑁 − 1 𝐵𝑤 × 𝑅𝑇𝑇 + 𝑡1 + 𝑡2 − 𝐵𝑤 × 𝑡𝑃𝐴𝑈𝑆𝐸 ≥ 0

• Substitute the data: Bw=400Gbps, N=7, RTT=20us, t1=t2=10us, 𝛼=0.18:

> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑃𝐹𝐶 − 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑆𝐹𝐶 ≥ 520𝐾𝐵𝑦𝑡𝑒

> 𝑡𝑃𝐴𝑈𝑆𝐸 ≥ 10.4𝑢𝑠

• Set ThresholdSFC=1MByte: or

> 𝑡𝑃𝐴𝑈𝑆𝐸 ≤ 30.4𝑢𝑠

• This calculation process could be given as informative in the Annex to help users setting PFC and SFC triggering threshold and
SFC pause time based on switch buffer capacities, round trip time as well as other influencing factors.

buffer

time

PFC threshold

SFC threshold

stage
1&2

stage
3&4

①

②&③

• Set tPAUSE=30us:

> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑆𝐹𝐶 ≥ 980𝐾𝐵𝑦𝑡𝑒

8

SFC Simulation

Spine Spine

Leaf Leaf

Incast flow set 1

Flow 2

Settings: Flow set 1 with
different degrees of incast,
see how flow 2 is influenced.
Packet-based load-balancing.

Environment: ESL simulation
platform, with the end-
stations simulate the NIC’s
behavior of NVIDIA GPUs.

Result

0

100

200

300

400

500

Incast=2:1 Incast=8:1 Incast=16:1

F
lo

w
 2

 B
w

/G
b

p
s

基线 新方案Baseline with SFC

Incast baseline simulation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Job 0 Job 1

Settings：

1. each link 100Gbps

2. Allreduce data:

200MByte

3. Allreduce algorithm:

Ring/HD

4. Slow Receiver: No.4,

at 50% speedJob 2 Job4Job 4

Slow
Receiver

16 17 18 19

Job 3
not affected by PFC

Collective communication with slow-receiver simulation

0

10000

20000

30000

40000

50000

60000

job 0 job 1 job 2 job 3 job 4

Job completion time - Ring

PFC rPFC

0

10000

20000

30000

40000

50000

60000

job 0 job 1 job 2 job 3 job 4

Job completion time - HD

PFC rPFC

30% 11% 5% 14%17%30+%

with SFConly PFC with SFConly PFC

us us

9

SFC verification

Verification environment settings Results

Task 1 Alltoall (sender: server 1-3, receiver: server 6) causes congestion on Leaf switch 5-8, PFC oops damages Task 2.

2*400G 2*400G

Server 1

Leaf 1

Server 2

Leaf 2

Server 3

Leaf 3

Server 4

Leaf 4

Server 5

Leaf 5

Server 6

Leaf 6 Leaf 7 Leaf 8

Spine 1 Spine 2

4*400G

4*400G

2*400G

2*400G

Task 1: Alltoall

Task 2: Allreduce

PFC

Incast congestion

SFC

Using SFC (proxy-mode), PFCs are sent to server 1-3, not server 4, avoiding unnecessary PFC spread and oops damage.

Oops
damage!

2*400G 2*400G

Server 1

Leaf 1

Server 2

Leaf 2

Server 3

Leaf 3

Server 4

Leaf 4

Server 5

Leaf 5

Server 6

Leaf 6 Leaf 7 Leaf 8

Spine 1 Spine 2

4*400G

4*400G

2*400G

2*400G

63.5 63.5

47

63.1
203

164.5

182

197

50

70

90

110

130

150

170

190

210

230

0

10

20

30

40

50

60

70

任务1(GB/s) 任务2(GB/s)

Baseline PFC only PFC+DCQCN SFC

Task 1 Task 2

GB/s GB/s

Case 1: The baseline, i.e., run task 1 and task 2 separately.

Case 2: PFC only. Task 2 is oops damaged because of PFC spread.

Case 3: Task 1 deteriorated because of DCQCN’s relatively slow reaction
and inaccurate control for on-off flows.

Case 4: Good test 2 performance without significant influence on task 1.

Victim

10

Another potential approach

• “The edge bridge intercepts the SFCM and participates in the protocol by stopping or slowing transmission into the network.
Then PFC from the edge bridge to the connected system happens (or doesn't happen) when the edge bridge buffering fills.”
Let’s call it bSFC (bridge-reacted SFC).

• And let’s call the other one (either the end-station receives SFCM or the proxy-bridge translates SFCM to PFC to the end-station)
eSFC (end-station-reacted SFC).

• The author suggests that the key distinction between bSFC and eSFC lies in bSFC's prioritization of leveraging edge bridge
buffers to ‘absorb congestion’ caused by incast bursts, and only triggering PFC when buffer capacity is exceeded. However, this
approach may not be ideal for AI workloads due to their extreme bandwidth demands, where buffer capacity is relatively
limited and often shared across ports. Aggressively occupying buffers could introduce unpredictable instability in overall
network performance. Additionally, it also risks triggering unnecessary PFC pauses (oops damage).

2*400G 2*400G

Server 1

Leaf 1

Server 2

Leaf 2

Server 3

Leaf 3

Server 4

Leaf 4

Server 5

Leaf 5

Server 6

Leaf 6 Leaf 7 Leaf 8

Spine 1 Spine 2

4*400G

4*400G

2*400G

2*400G

2*400G 2*400G

Server 1

Leaf 1

Server 2

Leaf 2

Server 3

Leaf 3

Server 4

Leaf 4

Server 5

Leaf 5

Server 6

Leaf 6 Leaf 7 Leaf 8

Spine 1 Spine 2

4*400G

4*400G

2*400G

2*400G

Oops
damage!

eSFC bSFC

Victim

11

Suggestions

• Move forward with the eSFC.

> Contributions, including computational analysis and simulations, have validated the rationality and effectiveness of the eSFC
approach for both high-performance DCNs and AIDCNs.

• The calculation process in this contribution could be given as informative in the Annex to help users setting SFC
parameters based on their use cases, e.g. buffer capacities, RTT as well as other influencing factors.

• SFC should be provided as a tool, just like PFC and QCN.

> The author's motivation is that SFC demonstrates particularly significant and unique benefits in AIDCN scenarios.

> Based on a review of prior contributions, the author cautiously suggests that both scenarios (AIDCN & high-performance DCN)
can share a unified SFC mechanism and protocol design.

> Even if future work reveals the need to transmit entirely distinct parameters, this could be accommodated through Type-
Length-Value (TLV) fields in the SFCM design.

