
1 |

March 10 2025

Maintenance item #378

802.1CB-2017

Venkat Arunarthi
Sunil Raj

2 |

• Maintenance item #378 description

• Problem illustration with examples

• Proposed changes

Topics

3 |

• Packets not yet seen after a sequence history reset are erroneously counted as
lost
– Description

– The VectorRecoveryAlgorithm calls ShiftSequenceHistory routine when it processes a packet with a
sequence number that is in the future (but still falls within the SequenceHistory). The
ShiftSequenceHistory routine erroneously increments the counter frerCpsSeqRcvyLostPackets as it
can’t differentiate the packets that are actually lost from the packets that are not yet seen. This is due to
the fact that SequencyHistory is initialized to all zeros by the SequenceRecoveryReset routine that
initializes the SequenceRecovery instance.

Maintenance item #378

4 |

• First frame received with sequence_number 0 in this example

– Bit 0 of SequenceHistory is set, bit 0 represents sequence_number 0

• Next frame that arrives with sequence_number 2

– SequenceHistory array gets shifted as shown

• frerCpsSeqRcvyLostPackets is incremented erroneously twice
for zero bits that got shifted out though these are not missing

• Potentially up to SequenceHistoryLength – 1 packets could be
miscounted as lost

– How many depends on the arrival order of sequence numbers.

• Algorithm needs to mark the array entries one through seven
as invalid when first frame with sequence_number 0 is received

Problem Illustration

0 0 0 0 0 0 0 0

SequenceHistory
frerSeqRcvyHistoryLength = 8

TakeAny = true

Rx sequence_number = 0

0 0 0 0 0 0 0 1

07

TakeAny = FALSE
RecovSeqNum = 0

rx sequence_number = 2
delta = 2

0 0 0 0 0 1 0 1

frerCpsSeqRcvyLostPackets = 2
RecovSeqNum = 2

20

0

0 0

sequence_number

5 |

• First frame received with sequence_number 3 in this
example

– Bit 0 of SequenceHistory is set, bit 0 represents
sequence_number 3

– Three cells corresponding to bit positions 1, 2 and 3 are valid
to be considered

– Four cells corresponding to bit positions 4 through 7 are
invalid, i.e., can’t be evaluated for Lost Packets

• Next frame that arrives with sequence_number 7

– SequenceHistory array gets shifted as shown

• frerCpsSeqRcvyLostPackets is incremented erroneously
four times for four zeros that got shifted out (if cell
positions 4 through 7 were not marked invalid)
– It will get miscounted three more times, if for example, next frame

received has sequence_number 10

• Cells in grey are valid to be considered but not the ones
in clear

Another case

6 |

• First frame received with sequence_number 7 in
this example

– Bit 0 of SequenceHistory is set, bit 0 represents
sequence_number 7

– All the other entries in this case are valid to be evaluated for
missing frames

• This applies to any other frame received with
sequence_number >= frerSeqRcyHistoryLength -1
first up

One more case – Boundary condition

0 0 0 0 0 0 0 0

SequenceHistory
frerSeqRcvyHistoryLength = 8

TakeAny = true

Rx sequence_number = 7

0 0 0 0 0 0 0 1

07

TakeAny = FALSE
RecovSeqNum = 7

0 0 0 1

Not seen yet
Valid entries to be counted as

lost if they don t show up

7

7
sequence_number

00 00

7 |

Proposed changes

Changes to clause 7.4.3.3 SequenceRecoveryReset

7.4.3.3 SequenceRecoveryReset

SequenceRecoveryReset is called whenever the BEGIN event (item a in 7.4.3.1) or

the RECOVERY_TIMEOUT event (item c in 7.4.3.1) occurs. It resets the

RecovSeqNum (7.4.3.2.3) and SequenceHistory (7.4.3.2.2) variables to their initial

states, increments frerCpsSeqRcvyResets (10.8.9), and sets TakeAny (7.4.3.2.6).

Note that RecovSeqNum and SequenceHistory are reset only if the

VectorRecoveryAlgorithm (7.4.3.4) is configured.

void SequenceRecoveryReset (

if (frerSeqRcvyAlgorithm == Vector_Alg) {

int i;

RecovSeqNum = RecovSeqSpace - 1;

for (i = 0; i < frerSeqRcvyHistoryLength; i = i + 1)

SequenceHistory[i] = 0; // Set all bits 0 (packet not seen)

}

frerCpsSeqRcvyResets = frerCpsSeqRcvyResets + 1;

SequenceHistoryInit = true;

InvalidHistoryCount = (frerSeqRcvyHistoryLength – 1);

TakeAny = true;

}

• Expand clause 7.4.3.2 Variables for sequence recovery to add
definition of SequenceHistoryInit and InvalidHistoryCount

– Propose 7.4.3.2.7 for SequenceHistoryInit and 7.4.3.2.8 for
InvalidHistoryCount

8 |

Proposed changes
Changes to clause 7.4.3.4 VectorRecoveryAlgorithm

Void VectorRecoveryAlgorithm () {

. . .

// Compute signed difference modulo RecovSeqSpace.

int delta = (sequence_number-RecovSeqNum) & (RecovSeqSpace - 1);

if (0 != (delta & (RecovSeqSpace/2)))

delta = delta - RecovSeqSpace;

// Here, -(RecovSeqSpace/2)<=delta<=((RecovSeqSpace/2)-1)

// After reset, accept any packet

if (TakeAny) {

TakeAny = false;

SequenceHistory[0] = 1; // Shift, adding a "seen" bit

RecovSeqNum = sequence_number;

if (RecovSeqNum >= (frerSeqRcvyHistoryLength – 1)) {

InvalidHistoryCount = 0;

SequenceHistoryInit = false;

}

else

DecrementInvalidHistoryCount (RecovSeqNum);

frerCpsSeqRcvyPassedPackets = frerCpsSeqRcvyPassedPackets + 1;

frerCpSeqRcvyPassedPackets = frerCpSeqRcvyPassedPackets + 1;

RemainingTicks =

((frerSeqRcvyResetMSec * TicksPerSecond) + 999) / 1000;

PRESENT_DATA;

} else if (delta >= frerSeqRcvyHistoryLength ||

. . .

9 |

Proposed changes

Changes to clause 7.4.3.6 ShiftSequenceHistory

7.4.3.6 ShiftSequenceHistory

This routine is called by the VectorRecoveryAlgorithm routine (7.4.3.4) to advance

the SequenceHistory bit array (7.4.3.2.2) and to count lost packets

(frerCpsSeqRcvyLostPackets, 10.8.7). ShiftSequenceHistory takes one parameter,

which is the new value for index 0 in the SequenceHistory bit array.

void ShiftSequenceHistory (int newZeroValue) {

int i;

if (InvalidHistoryCount == 0)

SequenceHistoryInit = false;

else

DecrementInvalidHistoryCount (1);

if ((0 == SequenceHistory[frerSeqRcvyHistoryLength - 1]) &&

SequenceHistoryInit == false))

frerCpsSeqRcvyLostPackets = frerCpsSeqRcvyLostPackets + 1;

for (i = frerSeqRcvyHistoryLength - 1; i != 0; i = i - 1)

SequenceHistory[i] = SequenceHistory[i - 1];

SequenceHistory[0] = newZeroValue;

}

10 |

Proposed changes

New routine DecrementInvalidHistory

void DecrementInvalidHistoryCount (int count) {

int i;

for (i = count; i != 0; i = i - 1)

InvalidHistoryCount = (InvalidHistoryCount - 1);

}

• Propose to add sub-clause 7.4.3.7

11 |

Thank You

	Slide 1
	Slide 2: Topics
	Slide 3: Maintenance item #378
	Slide 4: Problem Illustration
	Slide 5: Another case
	Slide 6: One more case – Boundary condition
	Slide 7: Proposed changes
	Slide 8: Proposed changes
	Slide 9: Proposed changes
	Slide 10: Proposed changes
	Slide 11

