
MERCE_Slides_2022_05_10

MITSUBISHI ELECTRIC R&D CENTRE EUROPE

8 0 2 . 1 C B - 2 0 1 7

M a i n te n a nc e i te m # 3 7 8
C h r i s t o p h e M a n g i n

2 0 2 5 / 0 1 / 2 1

MERCE_Slides_2022_05_10

C o n t e n t

• Maintenance item #378

• VectorRecoveryAlgorithm behavior upon BEGIN or TIME_OUT events

• Proposed work-around

2

MERCE_Slides_2022_05_10

8 0 2 . 1 C B - 2 0 1 7 , i t e m # 3 7 8

• Packets not seen after a sequence history reset are considered as lost
• Description

• Following the initialization of the variables used by the VectorRecoveryAlgorithm upon a BEGIN or TIME_OUT event, the
VectorRecoveryAlgorithm calls the ShiftSequenceHistory routine when it processes a packet with a sequence number that is in the future
(but still within the SequenceHistory). The ShiftSequenceHistory routine erroneously increments the counter frerCpsSeqRcvyLostPackets as
it cannot differentiate the packets that are actually lost from the packets that are not yet seen. This is due to the fact that SequencyHistory
is initialized to all zeros by the SequenceRecoveryReset routine that initializes the SequenceRecovery instance.

3

MERCE_Slides_2022_05_10

Ve c t o r R e c o v e r y A l g o r i t h m b e h a v i o r u p o n B E G I N o r T I M E _ O U T

• Functions and variables involved when the VectorRecoveryAlgorithm is used
• SequenceRecoveryReset

• Function called when the BEGIN event or the RECOVERY_TIMEOUT event occurs.

void SequenceRecoveryReset (
if (frerSeqRcvyAlgorithm == Vector_Alg) {

int i;
RecovSeqNum = RecovSeqSpace - 1;
for (i = 0; i < frerSeqRcvyHistoryLength; i = i + 1)

SequenceHistory[i] = 0; // Set all bits 0 (packet not seen)
}
frerCpsSeqRcvyResets = frerCpsSeqRcvyResets + 1;
TakeAny = true;

}

• ShiftSequenceHistory

• Function called by the VectorRecoveryAlgorithm routine to advance the SequenceHistory bit array and to count lost packets
(frerCpsSeqRcvyLostPackets). ShiftSequenceHistory takes one parameter, which is the new value for index 0 in the SequenceHistory bit array.

void ShiftSequenceHistory (int newZeroValue) {
int i;
if (0 == SequenceHistory[frerSeqRcvyHistoryLength - 1])

frerCpsSeqRcvyLostPackets = frerCpsSeqRcvyLostPackets + 1;
for (i = frerSeqRcvyHistoryLength - 1; i != 0; i = i - 1)

SequenceHistory[i] = SequenceHistory[i - 1];
SequenceHistory[0] = newZeroValue;

}

4

[7] [6] [5] [4] [3] [2] [1] [0]

0 0 0 0 0 0 0 0

RecovSeqNum = 65535
TakeAny = true

SequenceHistory

frerSeqRcvyHistoryLength = 8

MERCE_Slides_2022_05_10

Ve c t o r R e c o v e r y A l g o r i t h m b e h a v i o r u p o n B E G I N o r T I M E _ O U T

• VectorRecoveryAlgorithm
• Immediately after SequenceRecoveryReset is called, the VectorRecoveryAlgorithm accepts the first packet received as

valid. After the first packet has been accepted, all subsequent packets that are in the recovery window (i.e., last
packet number accepted – frerSeqRcvyHistoryLength + 1 to last packet number accepted + frerSeqRcvyHistoryLength)
are accepted, and and those packets with sequence_number values outside that range are discarded. […]

• The following pseudo-code only shows the branches of the VectorRecoveryAlgorithm taken when
the SequenceRecoveryReset function has been invoked, i.e. upon initialization of the
SequenceRecovery instance

5

MERCE_Slides_2022_05_10

Ve c t o r R e c o v e r y A l g o r i t h m b e h a v i o r u p o n B E G I N o r T I M E _ O U T

void VectorRecoveryAlgorithm () {
// Check that sequence number is present in the packet
unsigned int sequence_number;
if (sequence_number == frerSeqRcvyInvalidSequenceValue) {

…
}
// Compute signed difference modulo RecovSeqSpace.
int delta = (sequence_number-RecovSeqNum) & (RecovSeqSpace - 1);
if (0 != (delta & (RecovSeqSpace/2)))

delta = delta - RecovSeqSpace;
// Here, -(RecovSeqSpace/2)<=delta<=((RecovSeqSpace/2)-1)
// After reset, accept any packet
if (TakeAny) {

TakeAny = false;
SequenceHistory[0] = 1; // Shift, adding a "seen" bit
RecovSeqNum = sequence_number;
frerCpsSeqRcvyPassedPackets = frerCpsSeqRcvyPassedPackets + 1;
frerCpSeqRcvyPassedPackets = frerCpSeqRcvyPassedPackets + 1;
RemainingTicks = ((frerSeqRcvyResetMSec * TicksPerSecond) + 999) / 1000;
PRESENT_DATA;

} else if (delta > frerSeqRcvyHistoryLength || delta <= -frerSeqRcvyHistoryLength) {
// Packet is out-of-range. Count and discard it.

…
// Reset timer if working on an individual Stream

…
} else if (delta <= 0) {

// Packet is old and in SequenceHistory; have we seen it before?

// Packet has not been seen. Take it.

// Packet has been seen. Do not forward. Count the discard.

// Reset timer if working on an individual Stream

}

6

First packet received after BEGIN :
Sequence_number = 0

[7] [6] [5] [4] [3] [2] [1] [0]

0 0 0 0 0 0 0 1

RecovSeqNum = 0
TakeAny = false

SequenceHistory

Next packet received :
Sequence_number = 2
Delta = 2

Next + 1 packet received :
Sequence_number = 5
Delta = 3

MERCE_Slides_2022_05_10

Ve c t o r R e c o v e r y A l g o r i t h m b e h a v i o r u p o n B E G I N o r T I M E _ O U T

} else {

// Packet is not too far ahead of the one we want.

// Packet is out-of-order unless it directly follows RecovSeqNum

if (delta != 1)

frerCpsSeqRcvyOutOfOrderPackets = frerCpsSeqRcvyOutOfOrderPackets + 1;

// Shift the history until bit 0 refers to sequence_number.

while (0 != (delta = delta - 1))

ShiftSequenceHistory(0); // Shift, adding a "not seen" bit

ShiftSequenceHistory(1); // Shift, adding a "seen" bit

RecovSeqNum = sequence_number;

frerCpsSeqRcvyPassedPackets = frerCpsSeqRcvyPassedPackets + 1;

frerCpSeqRcvyPassedPackets = frerCpSeqRcvyPassedPackets + 1;

RemainingTicks = ((frerSeqRcvyResetMSec * TicksPerSecond) + 999) / 1000;

PRESENT_DATA;

}

}

void ShiftSequenceHistory (int newZeroValue) {

int i;

if (0 == SequenceHistory[frerSeqRcvyHistoryLength - 1])

frerCpsSeqRcvyLostPackets = frerCpsSeqRcvyLostPackets + 1;

for (i = frerSeqRcvyHistoryLength - 1; i != 0; i = i - 1)

SequenceHistory[i] = SequenceHistory[i - 1];

SequenceHistory[0] = newZeroValue;

}

7

[7] [6] [5] [4] [3] [2] [1] [0]

0 0 0 0 0 1 0 1

RecovSeqNum = 2
TakeAny = false
frerCpsSeqRcvyLostPackets = 2

SequenceHistory

Next packet received :
Sequence_number = 2
Delta = 2

[7] [6] [5] [4] [3] [2] [1] [0]

0 0 1 0 1 0 0 1

RecovSeqNum = 5
TakeAny = false
frerCpsSeqRcvyLostPackets = 5

SequenceHistory

Next + 1 packet received :
Sequence_number = 5
Delta = 3

0 0

0 0 0

MERCE_Slides_2022_05_10

Ve c t o r R e c o v e r y A l g o r i t h m b e h a v i o r u p o n B E G I N o r T I M E _ O U T

• Observed side effect
• frerSeqRcvyHistoryLength packets are counted as lost when a packet with a sequence number distant of

frerSeqRcvyHistoryLength from the sequence number of the packet initially received after a BEGIN or TIME_OUT event
• These packets may have never been sent.

• Result of the ShiftSequenceHistory function shifting out sequence number positions from the sequence number
history that are anterior to (smaller than) the first received packet’s

8

MERCE_Slides_2022_05_10

8 0 2 . 1 C B - 2 0 1 7 , i t e m # 3 7 8

• Proposed work-around
• Detect the initialization phase of the SequenceRecovery instance

• new Boolean variable set to TRUE by the SequenceRecoveryReset function : SequenceHistoryInit

• SequenceHistoryInit remains TRUE as long as the sequence number positions anterior to the sequence number of the first
packet received after a BEGIN or TIME_OUT event are not flushed out of the sequence history (SequenceHistory[])

• While SequenceHistoryInit is TRUE, frerCpsSeqRcvyLostPackets is not incremented in ShiftSequenceHistory

9

MERCE_Slides_2022_05_10

P r o p o s e d w o r k - a r o u n d

• Proposed modified recovery functions
• SequenceRecoveryReset

void SequenceRecoveryReset (
if (frerSeqRcvyAlgorithm == Vector_Alg) {

int i;
RecovSeqNum = RecovSeqSpace - 1;
for (i = 0; i < frerSeqRcvyHistoryLength; i = i + 1)

SequenceHistory[i] = 0; // Set all bits 0 (packet not seen)
}
frerCpsSeqRcvyResets = frerCpsSeqRcvyResets + 1;
SequenceHistoryInit = true;
InitNotSeenPackets = 0;
TakeAny = true;

}

• ShiftSequenceHistory
void ShiftSequenceHistory (int newZeroValue) {

int i;
if (0 == SequenceHistory[frerSeqRcvyHistoryLength - 1]) {

If SequenceHistoryInit == true {
InitNotSeenPackets = InitNotSeenPackets + 1;
If InitNotSeenPackets >= frerSeqRcvyHistoryLength;

SequenceHistoryInit = false;
} else

frerCpsSeqRcvyLostPackets = frerCpsSeqRcvyLostPackets + 1;
}
for (i = frerSeqRcvyHistoryLength - 1; i != 0; i = i - 1)

SequenceHistory[i] = SequenceHistory[i - 1];
SequenceHistory[0] = newZeroValue;

}

10

	802.1CB-2017
	Content
	802.1CB-2017, item #378
	VectorRecoveryAlgorithm behavior upon BEGIN or TIME_OUT
	VectorRecoveryAlgorithm behavior upon BEGIN or TIME_OUT
	VectorRecoveryAlgorithm behavior upon BEGIN or TIME_OUT
	VectorRecoveryAlgorithm behavior upon BEGIN or TIME_OUT
	VectorRecoveryAlgorithm behavior upon BEGIN or TIME_OUT
	802.1CB-2017, item #378
	Proposed work-around
	Diapositive numéro 11

