
MKA optimization for group CAs

Revision 1.3

MKA optimization for group CAs
Mick Seaman

MACsec Key Agreement (MKA, Clauses 9 through 12 of IEEE 802.1X-2020) explicitly
supports group connectivity. It provides a secure fully distributed multipoint-to-multipoint
transport and applications of that transport including distribution of data keys (SAKs) by
an elected Key Server. Each participant transmits and receives MKPDUs using a group
address, thus communicating with all the others and reducing the number of MKPDUs
required to add a new participant to an existing group.1 Each of the participants can
cryptographically validate MKPDUs transmitted by any of the others, supporting direct
timely communication to support (for example) early identification of an alternate Key
Server and (for another example) delay bounding of transmitted data. The Key Server
distributes each SAK, identifies the participants that are to use it and when they are ready
to receive from each of the others, and initiates data transmission protected by it.
Participants can or could (with appropriate standardization) reduce the processing required
to validate MKPDUs and install keys. This note describes some of what might be done,
points out some of the pitfalls.2 
________________________________________________________________________

1. Selective MKPDU validation

MKA participants other than an elected or aspiring
Key Server can omit, or treat as lower priority,
validation of certain MKPDUs, as follows.

The contents of MKPDUs are, very deliberately, not
confidentiality protected. This was initially done so
protocol operation, and any difficulty in the progress
of that operation, could be usefully observed by a
network administrator who did not possess the CAK.3
Each MKPDU’s content can be inspected and used to
decide whether it should be validated. MKPDUs can
be retained for later validation (subject to ageing out)
if required.

Selective validation is safe, from a security point of
view, provided no protocol action is taken as a
consequence of processing an unvalidated MKPDU,
as the current attack model assumes [see item a) of 9.1
of 802.1X-2020] that an attacker can selectively
prevent the delivery of any frame. It could be used to
reduce the validation workload of any participant,
however there are some more or less obvious
consequences worth spelling out ().

1.1 Duplicate MI detection
Each participant needs to check the content of
MKPDUs transmitted by other participants for
duplicate use of its own MI as specified in 9.4.2 of
802.1X. Before taking any action as a consequence of
apparent duplication, the MKPDU in question needs to
be validated.

1.2 Maintaining liveness
MIs (Member Identifiers) can only be added to a
participant’s Potential Peers or Live Peers List as a
consequence of receipt of an MKPDU that passes
validation. A participant that does not respond to any
Key Server MKPDU for 3 seconds,4 risks being aged
out by the Key Server and excluded from future
communication. So the last unvalidated key Server
MKPDU needs to be retained in case it needs to be
validated so a response including its MI.MN can be
sent.

1.3 Confirming connectivity
The presence of any other participant’s MI in a
transmitted MKPDU’s Live Peer List is an indication
that the transmitter has received a recent MKPDU
from the participant that includes the transmitter’s own

1 The group address used is generally one of the Reserved Addresses specified in IEEE Std 802.1Q, each of which has a defined scope i.e. frames with that
destination address are filtered by certain bridges. This reduces the risk of an ‘attack from a distance’ and of accidentally creating unwanted obscured secure
connections. A potential attacker needs the help on an insider (within the circumscribed scope) to interfere with MKA even if hat attacker possesses the CAK
(possibly by prior equipment theft).
2 This note follows up on a brief discussion in the 802.1 Security Task Group, November 2024. It should be regarded as a living document, a work in progress.
All statements in this note represent the personal opinion of the author, not that of the IEE, or the 802.1 Working Group or Task Groups.
3 The secure Connectivity Association Key (CAK) is either pre-shared/pre-place key (PSK) or a direct or indirect result of a prior authentication exchange,
demonstrated live possession of which is the token of prior authentication and authorization. See 6.2 of 802.1X for a description of the key hierarchy.
Allowing any network administrator to observe MKA operation without knowing the CAK significantly reduces the attack surface. Where CAKs are securely
distributed, or calculated, as a result of an authentication exchange there should be no need to make the CAK, or the ICK and KEK, available outside of as
secure partition within each participant that derives and uses the ICK and KEK to protect and verify MKPDUs and to wrap and unwrap SAKs (data keys).
4 MKA Life Time (Table 9-3of 802.1X-2020) is 6 seconds. I suggest 3 seconds for response time to guard against potential MKPDU loss, but that figure could
be refined. In stable operation the Key Server will transmit at MKA Hello Time (2 second) intervals, so simply discarding an MKPDU id a bet that the next
periodic transmission will be received.



MKA optimization for group CAs

Revision 1.3

MI and recent MN. That confirms a direct, current,
data path from the other participant to the transmitter.
If two participants, Alice and Bob (say), include each
other’s recent MI and MN in their respective
transmitted MKPDUs then there is a potential (at
least) direct secure data path between the two.
Optimizing out receive validation of MKPDUs from
participants other than the current Key Server (or
perhaps its potential successor) removes this
indication of connectivity, and a network administrator
needs to be aware of this potential reason for the
absence of expected Live or Potential Peer List entries.
For that reason, if not other, it might be advisable to
standardize a selective validation optimization, if
thought to be generally useful. While it could be used
without any change to protocol fields, it might be wise
to provide an indication of its use in MKPDUs.
If a participant has validated only MKPDUs recently
transmitted by the Key Server (within MKA Life Time
and MKA Life Time plus MKA Hello Time, see 9.4.3
of 802.1X), then the only peer on its Live Peers List
will be the Key Server, and the only peers on its
Potential Peers List will be those received on the Live
Peers List of Key Server MKPDUs.

1.4 Total number of MKPDUs transmitted
Since MIs received in unvalidated MKPDUs cannot
be added to a participant’s Live or Potential Peer Lists,
a failure to validate received MKPDUs from
participants other than a Key Server (Kevin, say) can
result in the transmission of more MKPDUs in total as
participant Bob (say) cannot learn Key Server Kevin’s
MI from Alice’s MKPDUs, but is reduced to
exchanging MKPDUs directly with Kevin. Detailed
analysis of this potential inefficiency depends on the
number of participants, the intervals at which they can
be expected join, and the relative effort expended on
receiving an MKPDU as opposed its reception and
validation. Kevin’s transmission strategy also plays a
part, as a single MKPDU can be transmitted in
response to initial transmissions from several other
participants—so Kevin can improve upon an
independent 3 way handshake with each of the other
participants.

1.5 Peer SCI determination
Unless extended packet numbering (XPN) is being
used, the MACsec nonce comprises an SCI (Secure
Channel Identifier, the transmitter’s MAC Address
followed by a port number) and a 32-bit packet

number (PN). The SCI is either encoded in the
SecTAG of each MACsec protected frame or derived
on receipt from the frame’s source MAC Address (9.3,
9.9, 14.1 of 802.1AE). 
The SCI is used, together with a two-bit Association
Number (AN) encoded in the SecTAG of each
received MACsec-protected frame to associate the
frame with a Secure Association (SA) and then to
identify and update the lowest acceptable PN for the
SA, discarding frames not within the replay window
(potentially enforcing in order delivery). Frames not
associated with a known SC/SA are discarded prior to
MACsec validation (if validation is required, see
validateFrames == Strict in Figure 10-4 of 802.1AE).5

The SCI of each peer is not included in MKPDUs
transmitted by the Key Server. The mapping between
each any given peer’s MI (which is included in the
Key Server’s Live Peer List) and the corresponding
peer’s SCI is available in each of the MKPDUs
transmitted by the peer. While there is no subsequent
MACsec-protected frame data integrity or
confidentiality exposure in taking the mapping from
one of the latter MKPDUs without validating it — if it
was sent by an attacker that did not in fact possess the
SAK, any subsequent apparently MACsec data frames
sent by that attacker will not pass validation — that
would increase an attacker’s DoS options and present
a confusing management picture. On balance, and
considering 1.4 above, it seems wise to continue to
require validation of any MKPDU prior to taking any
protocol action, including peer SCI determination.
NOTE—A received MACsec protected frame, sent by a CA
participant possessing the SAK, could be validated without
assigning it to an SA. So it would be possible create the SA, and to
assign an initial lowest acceptable PN value purely on the basis of
receiving the frame. The failure to follow the processing order
specified in 10.6 of 802.1AE could be considered harmless.
However it could also be impractical for hardware based MACsec
implementations.

2. Repeated MKPDU transmission
Hand-in-hand with possibility of selective MKPDU
validation is the possibility of repeated transmission of
the same MKPDU, specifically by a Key Server that is
attempting to facilitate rapid instantiation of secure
connectivity between potential CA participants whose
arrival is likely to be roughly but not exactly
synchronized by power supply availability. If
individual participants check the in-clear data of
presumptive Key Server MKPDUs, and their cost of
reception and such checking is acceptably low, the
Key Server can repeat the same MKPDU, possibly

5 Other settings of the management variable ‘validateFrames’ allow validation to be skipped, with or without SecTAG and ICV removal, or forwarding of
invalid frames. These settings were more relevant prior to MKA standardization, anticipating potential issues with non-standard key agreement protocols and
wishing to avoid mandating combined MACsec/MAC implementations which could prove unusable if those protocols failed.



MKA optimization for group CAs

Revision 1.3

without any Live or Potential Peer List entries, until
some target time has elapsed or a satisfactory number
of responses have been solicited. Only then might the
Key Server update its Live Peer List, possibly
distributing an SAK at the same time.
As with selective validation, repeated transmission is
safe, from a security point of view, as the current
attack model assumes [see item a) of 9.1 of
802.1X-2020] that an attacker can copy any frame and
transmit arbitrary frames (except of course frames
never previously transmitted and whose construction
would require knowledge of the CAK derived keys).
Rapid repeated MKPDU transmission addresses the
possibility that some participants transmit their initial
MKPDUs after power up when they remain unable to
receive from others who have already transmitted their
initial MKPDUs. In an ideal world that doesn’t
happen, but there may be active intermediate
components of the LAN infrastructure that power up
after the attached stations.

3. MKPDU transmission and SAK 
distribution
The discussion so far suggests lowering the MKA
workload for non-Key Server participants by reducing
the effort they expend in MKPDU validation. That
effort might be considered (by some) excessive in two
general cases: (a) when a very large number of
participants are involved;6 and (b) when very rapid
CA 7 formation is desired after some more or less
synchronizing event, such as near but not exact power
cycling of the attached participants causing the loss of
prior {SAK, PN, MI, MN} state. This second case can
be addressed, with or without the need to use partial
MKPDU validation (as described above), by paying
attention to MKPDU transmission timing and the Key
Server’s choice of when to distribute SAKs.

3.1 Basic MKPDU exchanges

Figure 1 and Figure 2 illustrate simple MKPDU
exchanges for SAK distribution and installation
(notation from 9.17 of 802.1X).

Figure 1 begins with an MKPDU transmission, after
power up, from Key Server, K, to participant A. Since
K and A can complete power up at different times, it is
likely that a prior MKPDU has been lost. A first
MKPDU from A might also precede the sequence
shown, effectively prompting K to begin. The last
MKPDU, A+2, merely advertises A’s transmit and
receive status—its receipt is not a vital part of
enabling MACsec-protected communication.

Figure 2 shows a continuation of the dialogue, with a
third participant, B, joining. MKPDUs transmitted by
B that A does not have to validate (but can validate
with lower priority) are shown as dashed arrows. The
addition of B to the CA forces (9.8 of 802.1X) the
distribution of a fresh SAK (K+2). A has to receive,
and validate, two MKPDUs from K—one with the
fresh SAK, and one indicating that K has started
transmitting use that SAK, so A can also proceed with
transmission using that SAK (transition from
CP:READY to CP:TRANSMIT in Figure 12-2 of
802.1X). After the first of these, A transmits an
MKPDU when it has installed SAK K+2 for reception,
allowing K to transmit the second, coordinating the
lossless rollover from K+1 to K+2.

6 The current limit as to the possible number of participants is effectively determined by the inclusion of each of their Member Identifier.Member Number
(MI.MN) tuples in one or other of the Live or Potential Peers Lists. At 16 octets per peer, that works out to a little less than 100 participants in a CA (secure
Connectivity Association). If each transmits at MKA Hello Time (2.0 seconds, Table 9-3 of 802.1X) that implies a constant validation rate of about 50
MKPDUs/second. Note that I do not intend to imply that sharing SAKs amongst such a large group is a good idea.
7 In this context CA stands for secure Connectivity Association, created by the use of MACsec over the insecure Connectivity Association created simply by
attaching end stations to the same (possibly bridged) LAN media.

Figure -1—Initial SAK Distribution

Figure 1—Initial SAK Distribution

K A
K+1:::

A+1::K+1:

K+2:A+1::{SAK}K+1, K+1.0.rt
Install 
K+1

A+2:K+2::K+1.0.rt Data tx 
with SAK
K+1



MKA optimization for group CAs

Revision 1.3

If the addition of participants to a CA is spread over
time, the pattern of communication for existing
participants on each addition will follow that of A in
Figure 2. Each receives a new SAK, installs it and
responds, receives the go ahead to transmit, and
reports its status. The last of these need not be prompt,
but can occur as part of periodic transmission. The
MKPDUs transmitted by the Key Server are multicast,
not per participant, so each participant addition results
in just one MKPDU from each of the existing
participants (reporting key installation).

The timing of fresh SAK distribution is restricted by
item c) in 9.8 of 802.1X — a fresh SAK can be
distributed if MKA Life Time (2.0 second) has elapsed
since the prior SAK was first distributed, or if the Key
Server’s Potential Peer List is empty. If new
participant arrivals occur at intervals that are shorter
than the minimum between the Key Server’s attempts
to distribute SAKs, they will result in the distribution
of a single fresh SAK after they have all be added to
the Key Server’s Live List. The Key Server cannot, of
course, distribute fresh SAKs faster that it can install
them itself. However there is no requirement in 9.8 for
the Key Server to wait until all Live List participants
have reported successful installation of a given SAK
before distributing a fresh SAK as such a requirement
would not cope with the possibility of participant
failure.

If distribution of a fresh SAK does address the arrival
of several new participants, as in the immediately prior
paragraph, then it might be distributed and brought
into service with as few as two MKPDU transmissions
per new participant, one from each of the existing
participants, and two from the Key Server. The
operative word here is ‘might’, as the first MKPDU
from each new participant needs to include a recent
MI.MN for K in its Potential Peer list. That could be
obtained from an MKPDU with a non-null Live List
transmitted by an existing participant, after validating
that MKPDU.

3.2 Rapid Group CA formation
As noted above rapid installation of SAKs by all the
intended CA participants can benefit from appropriate
SAK distribution timing. In particular, if the challenge
is that their availability is likely to be roughly but not
exactly synchronized by power supply availability it
helps if the Key Server has some idea of the target
time for full CA operation and:
a) The maximum expected time between Key Server

availability and the last participant becoming
available; or

b) The expected number of participants for viable
system operation following establishment of secure
connectivity; or

c) The identity (MAC Address) of each of the
essential participants.

With the last of these being obviously the most useful.
Note that the description of MKA operation in the
802.1X standard does not assume that the CA
participants have any prior knowledge of each other,
essentially discovering their identities and the fact
they can communicate after an authentication protocol
has provided each with the same CAK (and
authorization data), or after some physical
connectivity has been established, or after power up.
However in some potential applications those
participants have been previously physically installed
and software configured to some extent in a more or
less fixed network. The constraints upon such
participants may include a limited ability to record and
recall any data that changes from power on to power
on. In fact in the interests of cost most may have no
non-volatile memory that is capable of being modified
each and every time they power up. It is possible that
they have a record of the identities8 of the other
participants with whom they need to cooperate, either
as part of their fixed code or install time written
memory. It is also possible that most have no such (or

Figure -2—Follow up SAK Distribution

Figure 2—Follow up SAK Distribution

K A
Data tx 
with SAK
K+1

B+1:::
K+3:A+2:B+1:K+1.0.

rt

B

B+2:K+3::

K+4:A+2, B+2::{SAK}K+2, K+1.0.rt,K+2.1.r

A+3:K+4, B+2::K+1.0.rt,K+4.r

K+5:A+2, B+2::{SAK}K+2, K+1.0.rt,K+2.1.rt

A+4:K+5, B+2::K+1.0.rt,K+4.rt

Install 
K+2

Data tx 
with SAK
K+2

8 Such identity information might include the assignment of well-known (from the point of view of running code) local MAC addresses of other participants.



MKA optimization for group CAs

Revision 1.3

a very limited) record of their environment, even
though they have experienced it many times and the
designers hope is that they will continue to do so. In
that latter case, the Key Server system may be
responsible for orchestrating the operation of the
networked participants. In that case one possibility
that should not be overlooked is that MKA itself
provides a secure fully distributed
multipoint-to-multipoint transport, and is capable of
distributing and activating more than MACsec SAKs.
While the amount of data it can distributed is limited
by the size of MKPDUs (at least), and cannot be
considered an efficient substitute for MACsec
protected communication, it can distribute EAPOL
announcement TLVs including Organizationally
Specific TLVs (see Figure 11-15, 11.12, Table 11-8 of
802.1X-2020, and Annex D of IEEE Std 802.1Q for
examples) if configuration prior to MACsec operation
is required. One possibility is for the Key Server to
supply its already known list of SCIs even in advance
of the users of those SCIs having completed power up
(MIs are not required to support installation of SCIs
for reception). Supplying such a list does not preclude
later dynamic addition of new participants.

3.2.1 RNG considerations
Each MKA participant is required to use a fresh,
randomly generated 96-bit MI whenever it starts or
restarts. This is essential if does not have a record of
the highest MN used or received with the current
MI,MAC and so can no longer screen received
MKPDUs including that MI to check that they have
been transmitted by a currently live peer and include
the freshest information distributed by that peer.9

MKA’s threat model [item a) in 9.1 of 802.1X]
includes attackers that can selectively prevent delivery
of frames to some participants, can copy frames
(including MKPDUs), and can transmit arbitrary
frames to arbitrary frames. An attacker could record
MKPDU exchanges between a participant and a
legitimate Key Server. Then, if the participant restarts
(as evidenced by its MN re-use) with the same MI, the
attacker could replay the recorded Key Server
MKPDUs in apparent response to those sent by the
participant, inducing it to install a previously used
SAK. When that SAK is then used by the participant
with a previously used PN (i.e. repeating Cipher Suite

nonce use) but with different data (assumed to be a
result of changes in the participant’s environment) the
attacker can then use those repeated data frames to
recover the SAK and gain receive and transmit access
to previously secure communication. Given the
aforementioned attack capabilities, other CA
participants can be completely unaware of the
intrusion.
So, a potential challenge for rapid CA formation, or
extension, incorporating newly started or restarted
participants lies in each of those participants providing
an adequate RNG shortly after starting.10,11,12

3.2.2 Detecting new participants
An important factor in the overall delay from initial
Key Server availability is when each of the other
participants receives an acceptable (for subsequent
liveness proof) Key Server MI.MN. This can be
reduced by rapid repeated Key Server MKPDU
transmission, either consistently through the start up
phase, or in response to an initial transmission from
each would be participant. One approach, not
addressed in the standard but not requiring any change
to the contents of transmitted MKPDUs, is for the Key
Server to poll by repeating exactly the same MKPDU
with unchanged MI.MN. Provided the overall repeat
time is short, this should not significantly reduce the
Key Server’s ability to timeout inactive participants.
However other participants should avoid unnecessary
processing of MKPDUs from the Key Server or any
other participant (as identified by transmitter MI) by
only validating those whose MN is greater than that
last processed or awaiting processing. Since each
MKPDU reflects the current state of its transmitter
(and not just one of a succession of commands)
information from the last is all that is required.

3.2.3 Continued SAK Distribution
A fresh SAK is distributed whenever the Key Server’s
Live List changes (9.8 of 802.1X). This provides a
Cipher Suite independent defence against nonce
reuse—a participant that resets, forgetting its prior PN
use and restarting its PN sequence with the next SAK
it receives, is also obliged to forget its prior MI.13,14

When one of the current non-XPN Cipher Suites is
being uses, the SCI (a concatenation of each
participant’s MAC Address and port number)15

9 See 6.2, 9.2.1, 9.3.1, 9.3.3, and 9.8.1 of 802.1X for general Random Number Generator (RNG) requirements, and 9.4.2–9.4.4, 9.8, 9.10, 9.17, 9.18.3, 9.18.4,
9.19, and 12.2, for MI generation and use.
10 As a practical matter, the acceptable probability of prior MI duplication (where it differs from the ideal) may need to accommodate the deployment of a very
large number of instances of the basic design while an attacker could benefit from a small number of successful attacks.
11 The potential technical background reading list is extensive and I have decided not to speculate further on potential approaches, particularly for very low
cost participants, in this note.
12 See 6.2, 9.2.1, 9.3.1, 9.3.3, and 9.8.1 of 802.1X for general Random Number Generator (RNG) requirements, and 9.4.2–9.4.4, 9.8, 9.10, 9.17, 9.18.3,
9.18.4, 9.19, and 12.2, for MI generation and use.



MKA optimization for group CAs

Revision 1.3

divides the nonce space between participants. So the
rule forcing fresh SAK distribution could be relaxed
for Key Servers that retain a complete record of
{MI,SCI} tuples for the SAK currently being
distributed: new participants need only force fresh
SAK distribution only if their SCI was previously used
with a different MI. That should lessen the load for
participants that have already installed a current SAK.
Additionally such an existing participant need only
validate and respond once a second or so to a stream of
successive MKPDUs from the same Key Server that
only serve to convey the SAK to new participants.
Those periodic responses will suffice to retain its
presence on the Key Servers Live List. 

While this (3.2.3) optimization does not involve any
change or addition to the existing MKPDU format and
TLVs, it should be subject to the scrutiny and
documentation that comes with
standardization—verifying that it does indeed address
a real need not met by the existing standard or
optimizations previously described, that envisaged use
cases do not require fresh SAKs for other reasons, and
ensuring that it not used with any competing
optimizations that might also be thought to be possible
with the existing MKPDU specification.

3.2.4 Participant restarts

Continued SAK distribution as described above
(3.2.3) reduces the load placed on existing participants
(by not requiring that they install a further SAK) as
new participants (with a distinct SCI) are recognized
as Live by the Key Server. It does, however, require
fresh SAK distribution if a participant already on the
Key Server’s Live List restarts with the same SCI.
Continued SAK distribution with the same Key
Number also does not support XPN Cipher Suites, as
Live List additions and removals can change SSCI
assignments (see 9.10 of 802.1X).

The requirement for fresh SAK distribution stems
from the absolute need to avoid nonce reuse with the
standardized Cipher Suites. Distribution of an SAK, as
specified by 802.1X-2020 allows a participant to use
that SAK together with the participant’s SCI and a
32-bit PN (for non-XPN Cipher Suites) or with the
participant’s SSCI and a 64-bit PN (for XPN Cipher

Suites). The same SAK could be used with a repeated
PN without reusing a given {SAK, nonce} if other
fields extend the nonce values as described below ().

3.2.5 XPN nonce extension

When the XPN Cipher Suites, (GCM-AES-XPN-128
or GCM-AES-XPN-256) are used, a 96-bit Salt
(10.7.27, 10.7.28, 14.7 and 14.8 of 802.1AE) is
XOR’d with each participant’s 32-bit SSCI and 64-bit
XPN to yield the Cipher Suite nonce.

When MKA is used for key agreement, the 64 least
significant bits of the Salt are the 64 least significant
bits of the Key Server’s MI, the 16 next most
significant bits of the Salt are the 16 next most
significant bits of the Key-Server’s MI XOR’d with
the 16 most significant bits of the MKA Key Number
(KN). The 16 most significant bits of the Salt are the
16 most significant bits of the Key Server’s MI XOR’d
with the 16 least significant bits of the Key Number.

The Salt thus creates a distinct fraction of the nonce
space for each of the first 216 Key Numbers used with
its MI.16 MKPDU size limits ensure that all SSCIs
will be encoded in the 16 least significant bits of the
SSCI field, and will not interfere with this
{Key Number.MI bits} space in the Salt. 

So the Key Server could, when using these XPN
Cipher Suites, continue to distribute the same SAK
even though the Key Server’s Live List (listing MIs of
participants allowed to use the SAK for transmission)
has changed provided that the Key Number is changed
with each change in the Live List. That Key Number
change prompts the necessary SA AN (Association
Number) increment, and the SAK installation and
rollover procedures (see newSAK in the CP state
machine, Figure 12-2 of 802.1X) that accompany
distribution of an SAK with a new Key Number.

A participant that receives a distributed SAK with a
new Key Number can skip the calculations necessary
to unwrap and install the SAK if a simple string
comparison with the prior wrapped SAK shows it to
be a repeat. The fresh set of SSCIs do need to be
installed, and the ability to receive using this new SA
reported (using the MACsec SAK Use parameter set,
Figure 11-10 of 802.1X) so the Key Server can

13 The reset participant (A, say) will only accept an SAK from a Key Server (K) when its (A’s) new MI has appeared on the K’s Live List, which will have
caused K to distribute a fresh SAK. K cannot reliably track and update A’s PN use, as [in the threat model, a) in 9.1 of 802.1X] the attacker could have
selectively limited the propagation of A’s frames.
14 A further use case specific consideration concerns possible theft of a participant system and extraction of the SAK. While the CAK and its derived keys that
are used to protect and validate MKPDUs might be retained within a secure boundary in the system, it is most unlikely that such precautions could be applied
to use of the SAK. There is no suggestion that SAK changes provide perfect forward secrecy (PFS), but it could raise the cost of some attacks.
15 In most cases each port (physical MAC entity) will have its own MAC Address, so the port number component will not play a significant role.
16 In addition to the less significant effects (for this note) of using a Key Server instantiation dependent fraction of the 80 least significant bits of the nonce
(IV) for any given SAK value, and not using nonces is strict numerical order.



MKA optimization for group CAs

Revision 1.3

coordinate transmit rollover for all participants
(transition from CP:READY to CP:TRANSMIT in the
CP state machine, Figure 12-2 of 802.1X).

Changing Key Number without changing the SAK
when the XPN Cipher Suites are being used, as
described here (3.2.5), does not require changes or
additions to the existing MKPDU and TLV formats.
Indeed existing implementations that are unaware of
the potential optimization and do not check for the
repeated SAK will (if correct) interoperate with Key
Servers and other participants that use it. However this
optimization does not strictly follow all the rules for
fresh SAK use specified in 9.8 of 802.1X, so should be
standardized, and the comments in 3.2.3 regarding
public scrutiny of both need and mechanism apply.

While the upper, Key Number influenced, bits of the
Salt could be used to allow a given SAK to protect
more than 264 frames, that is not the intent of this
optimization, which rather addresses reducing the
workload during periods of significant change. Even at
1 Tb/s fewer than 240 back to back minimum sized
Ethernet frames can be transmitted in a week, and
cryptanalytic attack should not be made easier by
unnecessarily prolonging use of a single SAK.

3.2.6 PN nonce extension

When a non-XPN Cipher Suite (GCM-AES-128 or
GCM-AES-256) is used, the 64 most significant bits
of the 96-bit nonce (IV, 14.5 and 14.6 of
802.1AE-2018) are the octets of the SCI. The
most-significant octets of the SCI are a MAC Address
associated with the transmitter and the two least
significant octets are a Port Identifier. The inclusion of
the Port Identifier supports the following possibilities:
a single system MAC Address could be used for
multiple physical ports (MAC entities), although
current standards recommend or require each to have
its own unique MAC address; or multiple virtual
instantiations (as yet unspecified) of the physical port
could be supported in a single CA; or a 64-bit MAC
Address could be used without requiring a change to
the length of the SCI or its encoding in the MACsec
SecTAG (a possibility that diminished for other
reasons since the initial standardization of MACsec).
Some or all of the Port Identifier bits could thus be
used to identify allocate successive fragments of the
nonce space in a similar way to that described for the
XPN Cipher Suites (3.2.5). Again the reason for doing

so is to lessen the processing load (and consequent
delays involved) in repeated SAK installation
following closely staggered recognition.

The fragments of nonce space could be identified by
encoding least significant bits of the Key Number in
the most significant bits of the SCI Port Identifier
space.17 Coupling the nonce space fragments to Key
Numbers allows their use to be coordinated by the
normal SAK Rollover procedures, just as for the XPN
Cipher Suites.

802.1Q specifies 12-bit Bridge Port Numbers.
Assuming other participant systems will have modest
port counts, this leaves 4 bits to identify alternate
nonce spaces. That is probably sufficient, allowing the
same SAK to be retained across 16 group formation
episodes, during each of which one or more
participants could join the Key Server’s Live List. The
true (i.e. without any included Key Number bits) Port
Identifier need to be advertised by each participant in
its Basic parameter set (Figure 11-8 of 802.1X) SCI.

Each participant needs to advertise its ability to use
this PN nonce extension, and the Key Server needs to
be able to select its use for any given distributed SAK
and to be able to distribute a SAK that is not to be used
with the extension if unsupported by one or more
members of the Live Peer List using the SAK. One
way to do that would be to assign one of the currently
reserved bits in the third octet of the Live Peer List and
Potential Peer List to signal support of the capability,
and to assign one of the reserved bits in the second or
third octet of the Distributed SAK Parameter set to
select its use. An MKA Version Number of 4 or above
(it is currently 3) would be used by any participant
capable of setting either of these bits (see versioning
rules in the third paragraph of 11.11 of 802.1X).18 An
alternative approach, consistent with the existing
specification, would be to assign two additional
MACsec Cipher Suite reference numbers for use in the
Distributed SAK Parameter set and in the MACsec
Cipher Suites EAPOL-Announcement TLV (type 112
in Table 11-8 and Figure 11-12 of 802.1X). The latter
may be thought to be consistent with Cipher Suite
specification to date, and would not require a version
number increment but does add more octets to the
MKPDUs than might be thought desirable. The choice
between these approaches does affect the way they are
documented.

17 Other solution are of course possible, including creating new parameter sets, extending existing parameter sets, and borrowing reserved bits from existing
fields including (notably) the Live Peer List and Potential Peer List parameter sets —at least one of these parameter sets needs to be present in MKPDUs sent
by participants and by the Key Server prior to SAK distribution to Live Peers.
18 Not all future versions of MKA should be tied to this capability, so a version number increment alone is insufficient. 



MKA optimization for group CAs

Revision 1.3

The PN nonce extension described here (3.2.6) does
require standardization.

3.2.7 SSCI nonce extension
The available nonce space for given SAK can also be
effectively extended by simply adding an SSCI when a
the Key Server detects a new participant.19 This has
the appeal of not requiring an MKA Key Number
(KN) increment and the accompanying key rollover
procedure when the new participant is added. It
arguably requires a change in the MACsec standard
(802.1AE) and in the semantics of the Key Server’s
Live List (as specified in 802.1X) when used in
conjunction with Key Distribution. Semantic change is
what the EAPOL protocol version handling rules (and
other similar versioning rules in other 802.1 standards)
were designed to prohibit. The issue described further
below.
Using additional SSCIs to avoid the KN increment
with its need to update the AN, its need to update the
XPN Salt, and its need to use the CP state machine
SAK rollover procedure, also means that the signalling
that is part of that SAK update procedure does not take
place. The Key Server can receive indications that new
participants can receive and transmit with the assigned
SSCIs and the existing SAK, but can see no change in
existing participants status. So a new participant can
only tell when other new participants are capable of
receiving the frames it will transmit if it spots their
receive status transition in the MKPDUs they transmit,
and not by receiving information in Key Server
MKPDUs. A new participant has no way of telling
when existing participants have installed its SSCI.
Existing participants also have no way of knowing
when the new participant is capable of transmission
and reception, as far as they are concerned the MAC
was already operational (OperUp) and continues to be
OperUp.
The issues with allocating SSCIs as participants are
detected by the Key Server (allocating a fresh SSCI
for each MI, so a rebooted participant will use a
different fraction of any given SAKs overall nonce
space) are as follows.
The fourth paragraph of 10.7.13 ‘Receive SA
creation’ of 802.1AE specifies SSCI assignment:
“MKA, specified in IEEE Std 802.1X, does not
distribute SSCIs explicitly. A KaY assigns SSCI
values as follows. The KaY with numerically greatest
SCI uses the SSCI value 0x00000001, the KaY with
the next to the greatest SCI uses the SSCI value

0x00000002, and so on. This assignment procedure is
not necessarily applicable to any other key agreement
protocol.”20

The fifth and subsequent paragraphs of 9.10 of
802.1X-2020 reinforce that ordering, but specify that
for MKA Version 3 (or higher) the SSCI assignments
for an XPN Cipher Suite from the order in the Live
Peer List. That appears to be definite enough to break
the tie with the SCI defined order.
The existing 802.1X specification does not have a
reserved MI value to indicate that no MI (and hence no
SCI or SA) is present for a given SSCI position in the
Live Peer List, and one is required to avoid needless
creation of a received SA, although if the Key Server
picks a value (possibly dynamically in the worst case)
only one wasted SA would be created.
If the CA can include a significant number of
participants, e.g. 50 or more, and the expectation is
that a given participant system might appear as a fresh
participant more than once, either due to a potential
reboot during an initial erratic power up sequence or
due to temporary power down while the overall
network of participants continues group CA operation,
then SSCI nonce extension will not avoid the need to
support SAK rollover as currently required by the
802.1X CP state machine.

A. Additional background and notes
t.b.s.

19 Lars Voelker identified this possibility, building the XPN nonce extension previously described (3.2.5 above).
20 See also the following note.


	MKA optimization for group CAs
	1. Selective MKPDU validation
	1.1 Duplicate MI detection
	1.2 Maintaining liveness
	1.3 Confirming connectivity
	1.4 Total number of MKPDUs transmitted
	1.5 Peer SCI determination

	2. Repeated MKPDU transmission
	3. MKPDU transmission and SAK distribution
	3.1 Basic MKPDU exchanges
	3.2 Rapid Group CA formation
	3.2.1 RNG considerations
	3.2.2 Detecting new participants
	3.2.3 Continued SAK Distribution
	3.2.4 Participant restarts
	3.2.5 XPN nonce extension
	3.2.6 PN nonce extension
	3.2.7 SSCI nonce extension



