Introduction of IEEE P802.11

Prepared by Vic Hayes, Chair, AT&T Utrecht, the Netherlands

Slide 1

Representation

- For the Frequency Hopping medium
 - Peter Chadwick, G3RZP
 - GEC Plessey Semiconductors, Inc
 - · Wiltshire, United Kingdom
 - Naftali Chayat
 - BreezeCom
 - Tel Aviv, Israel
- For the Direct Sequence medium
 - Don Sloan
 - · Aironet Wireless Communications Inc.
 - · Akron, Ohio

Outline

- Organization
 - IEEE P802
 - IEEE P802.11
- Functional requirements
- · Physical layers
- Medium AccessControl

Slide 3

IEEE PROJECT 802

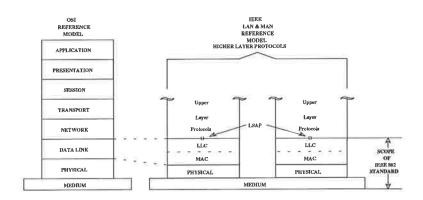
- Local and Metropolitan Standards Committee (LMSC)
- Formed in 1980
- Sponsored by the Computer Society
 - Largest of 35 Societies
- Local Area Networks (LANs)
 - The only LAN standards development organization
- 8 Standards adopted as International Standard by ISO/IEC
 - International Standards Organization and International Electrical Committee
- Metropolitan Area Networks
- Over 450 Voting Members, over 600 Observers
- 11 Working Groups, 2 Technical Advisory Groups 802.1 through 802.14

IEEE PROJECT 802

- Local Area Network Definition
 - Moderate to high signalling rate
 - > 1 Mbit/s
 - Moderately sized geographic area
 - · Room to campus size
 - Generally owned, used and operated by single user
 - · In contrast to wide area networks
 - Common shared medium

Slide 5

IEEE Project 802.11

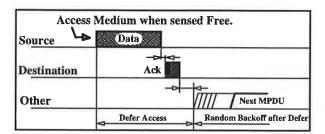

- Wireless Local Area Networks Standards Working Group
- Established July 1990
- Membership
 - 79 voting members, 28 aspirant voting members
 - Membership is by individual, not by company
 - Complete mailing list with over 180 addresses
 - USA, Canada, Europe, Israel, Japan, Korea, Taiwan
 - Manufacturers
 - Computers
 - · Micro-electronics
 - Infra-red
 - · Radio equipment
 - Users
 - Government
 - Manufacturers

802.11 Functional requirements

- Requirements study showed two types of networking needs:
 - asynchronous, that is bursty traffic, but when something to send:
 need for very fast delivery
 - isochronous, that is regular traffic, in small amounts at a time, but at a constant pace
- Therefore 802.11 adopted the following requirements:
 - Asynchronous MSDU delivery on all stations
 - MSDU is the MAC Service Data Unit
 - Optionally "time-bound MSDU delivery service"
- Pedestrian speed and vehicular speed
 - premises environment
- Security: first review 802.10 provisions
- Common MAC to support various PHYs
 - regulation dependency

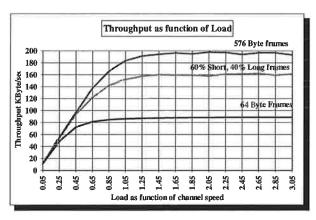
Slide 7

Computer Architecture



Multiple PHYs

MAC PHY 10BASE2 10BASE5 10BROAD36 1BASE5 all Ethernet, wired 802.3 10BASE-T but not inter-10BASE-F operable on 10BASE-FP 10BASE-FL the medium 10BASE-FB **DSSS** possibly all 802.11, but wireless 802,11 **FHSS** not interoperable on IR the medium


Slide 9

802.11, MAC: Basics

- "Distributed Medium Access Control Protocol" using an Ethernet like *CSMA/CA* + *Ack* scheme.
 - Collision "Avoidance" rather then a "Detection" scheme.
 - Effectiveness demonstrated in Wavelan product.
 - Allows MAC level recovery of "Lost Packet" using a retransmission algorithm.
 - Includes provisions to deal with "Hidden Nodes".

802.11, MAC: Performance

- Efficient and stable throughput.
 - Example: Based on 2 Mbps Wavelan speed.

Slide 11

802.11, MAC: Other Functions

- Roaming through the Wireless Infrastructure
 - Maintain Continuous connectivity
 - Station will "Re-Associate" with Access Points based on "Signal / Link Quality".
 - Support multi channel roaming.
 - "Distribution System" will adapt to logical location changes of the station.
- Provisions to use minimum Battery Power
 - Strategy: Switch nodes off as much as possible, while maintaining network configuration.
 - Traffic buffering functions are included in the Access Point to support this.
- "Wired Equivalent Privacy" encryption algorithm is included.

802.11, PHY, Radio

- Concentrate radio work on the 2.4 GHz band (ISM)
 - Most promising globally Spread Spectrum required
- Also allowed to start work in 1.9, 5.2 and 5.8 GHz bands
 - no activity yet

Slide 13

Direct Sequence Spread Spectrum

- Direct Sequence uses an 11 chip Barker Sequence to multiply the transmitted data
- Receiver divides received signal by same Sequence to recover the data
 - narrow band interference deminished
 - implementations can resolve multipath in the correlation
- modulation of 2 Mbit/s in DQPSK (Differential Quaternary Phase Shift Keying)
- fall back modulation of 1 Mbit/s in DBPSK (Differential Binary PSK)
 - 3 channel pairs for USA
 - 3 channel pairs for Europe (1 pair with single channel)
 - · 1 channel for Japan

Frequency Hopping Spread Spectrum

- Frequency Hopping uses one of out 79 channels at a time
- hops from one frequency channel to the next at a 2.5 hops/s
 - 3 sets of 22 hop sequences defined
- modulation for 1 Mbit/s in 2 level GFSK (Gaussian Frequency Shift Keying)
- modulation for 2 Mbit/s in 4 level GFSK, channel permitting

Slide 15

802.11, PHY, Infra-Red

- Modulation for 1 Mbit/s (basic rate) in 16-PPM (Pulse Position Modulation)
- Modulation for 2 Mbit/s (enhanced rate) in 4 -PPM
- Transmitter illuminates the ceiling with a diffuse

Status

- · Second draft ballot conducted
- 47.5 % approval (75 % required, unanimous preferred)
 - 31 (17) approving
 - 33 (66) disapproving
 - 5 (11) abstaining
- Resolving negative votes at November/January meeting
- Second draft sent to ISO annexed to a Proposed New Work Item

Slide 17

IEEE P802.11 schedule

- WG Confirmation ballot Jan/Feb 1995
- Resolve issues at March 1996 meeting
- Sponsor Ballot Mar/Apr1996
- Resolve issues at May 1996 meeting
- Sponsor Confirmation ballot Jun 1996
- Resolve issues at July 1996 meeting
- Standards Board meeting September 17-18, 1996

			Į.
			į