

ISO/IEC JTC 1/SC 6 "Telecommunications and information exchange between systems" Secretariat: KATS Committee Manager: OH Jungyup Mr

PWI proposal on Deterministic Wireless Industrial Network

Document type	Related content	Document date	Expected action
General document Other	I	2021-07-13	COMMENT/REPLY by 2021-08-13

Replaces : N-17529 NWIP on Industrial Wireless Network

Description

Source: Korean NB

This document is circulated for review and consideration at JTC 1/SC 6 meeting in August-September 2021.

Preliminary Work Item Proposal on Deterministic Wireless Industrial Network

July 1, 2021

Seong-Soon Joo, Jaesun Cha, Eun-Hee Kim, Jabeom Gu, Kyeseon Lee, Tae-Joon Park

ETRI, KOREA

Wireless Industrial Network (I)

- Use case of wireless industrial network
 - wireless network in factory automation

Wireless Industrial Network (II)

- Requirements of industrial applications & real-time classes
 - factory automation, process automation, condition monitoring

	Number of	Cycle time	Data size
	end nodes	[ms]	[Byte]
FA	2 - 50	0.25 - 30	15 - 64
PA	100 - 300	1 - 5000	30 - 1500
CM	100 - 1000	100 - 10000	30 - 1500

< Requirements of industrial applications >

Real-time class	Type of control	Real-time requirements			
Real-time class	Type of control	Latency	Jitter		
No real-time	CM	$\geq 100 \mathrm{ms}$	-		
Soft real-time	CM & PA	10 - 100 ms	-		
Hard real-time	PA & FA	1 - 10 ms	<1 ms		
Isochronous real-time	FA	$\leq 1 \text{ ms}$	≤1 µs		

< Requirements of industrial real-time classes >

source: S.Dietrich, G. May, O. Wetter, H. Heeren, and G. Fohler, "Performance indicators and use case analysis for wireless networks in factory automation, " IEEE International Conference on Emerging Technologies and Factory Automation(ETFA), 2017

Wireless Industrial Network (III)

- Requirements on wireless industrial network
 - deterministic & reliable wireless transmission for closed loop feedback control
 - Isochronous real time shall be supported
 - bounded latency and jitter
 - latency <1ms
 - jitter < 1us
 - cycle time = $0.25 \sim 30$ ms
 - high reliability
 - packet error rate <10⁻⁶
 - multi nodes(sensor/actuators)
 - max. 120 nodes
 - ISM band
 - private local network

source: IEEE-SA Industry Connections Report, IEEE 802.1-19-0026-03-ICne

Standardization on Industrial Network (I)

- Evolution of wired industrial network
 - towards time sensitive network
 - Isochronous real-time for closed-loop control is an essential requirement for industrial network

Standardization on Industrial Network (II)

- wireless industrial network for providing isochronous real-time service
 - not yet standardized

Preliminary Work Item Proposal on Deterministic Wireless Industrial Network

- standardization on the wireless industrial network for closed-loop feedback control
 - wireless network can guarantee deterministic latency and reliable transmission simultaneously
 - Deterministic Wireless Industrial Network (DWIN) for smart factory automation

Technical Specification of DWIN (I)

• DWIN architecture

- network server, access point, end node
 - optimal wireless channel allocation and spatial resource allocation
 - time aware traffic shaping based on high-precision network synchronization
 - multi-channel, multi-band, multi-AP aggregation

Technical Specification of DWIN (II)

- Wireless packet transmission guaranteeing deterministic latency
 - Time Division Multiplexing for multiple short packet transmission
 - very short transmission interval is allowed
 - \checkmark For example, only 16µs is allowed for each node when 120 nodes in 2ms frame
 - static reservation of time slot to remove uncertainty in latency
 - PHY PDU aggregation for efficiency
 - representative UL preamble
 - fast AGC/CFO/preamble for short packet transmission
 - high-precision uplink synchronization

Technical Specification of DWIN (III)

- Flexible frame structure for supporting various industrial applications
 - Single channel with TDD frame structure
 - network where non-isochronous & isochronous application co-exist
 - relatively long cycle time and small number of nodes
 - Multiple channel with FDD frame structure
 - dedicated network isochronous application only
 - short cycle time and large number of nodes

Technical Specification of DWIN (IV)

• Example of TDD frame

• Example of FDD frame

•	28µs ◀ ►				1,920µs				52µs ◀ →
Downlink	Preamble (20µs)	SIG (8µs)		lot #1 I6µs)		Slot <i>‡</i> (16		idle (52µs)	
Uplink	Preamble (20µs)	Slot #1 (16µs)		Slot #1 (16µs					
	4 20μs	 1,920μs ▲ ▲ 60μ 				Dµs →			

11

Technical Specification of DWIN (V)

- Combined diversity technologies for guaranteeing high reliable transmission
 - Time/Frequency/Space diversity
 - multi-channel/band(2.4/5/6GHz)/AP transmission
 - directional antenna, beamforming, FEC optimization, etc
 - synchronized resource reservation through control plane between network control server and access point

Summary of Technical Specification

- DWIN physical layer operation
 - Frame structure to support requirements on the cycle time and number of nodes
 - Uplink/Downlink time/frequency synchronization
 - Modulation and FEC optimized for small packet transmission
 - Time/frequency/space diversity
- DWIN MAC layer operation
 - DWIN MAC frame structure
 - Contention/reservation based channel access
 - Priority based queue management & Time based traffic scheduling for deterministic transmission
 - Control plane functions (registration, connection management, resource allocation, etc)
 - Network synchronization
- DWIN network management
 - Control plane functions between network control server and access point
 - AP & End node management
 - Network resource management

A Preliminary Work Item Proposal (I)

- ISO/IEC JTC1 SC6
 - working in WG1
- Title
 - "Information technology Telecommunications and information exchange between systems
 - Deterministic wireless industrial network"
- Scope
 - This document focuses on networking issues to provide the isochronous real-time wireless channels for closed-loop control in factory automation
 - This document specifies:
 - the physical layer
 - the medium access control layer
 - the network management

A Preliminary Work Item Proposal (II)

- Structure of Working Draft
 - 1. Scope
 - 2. Normative references
 - 3. Terms and definitions
 - 4. Abbreviated terms
 - 5. DWIN general description
 - isochronous real-time wireless network
 - time-aware wireless network overview
 - components of DWIN architecture
 - 6. DWIN physical layer
 - deterministic short cycle time for FA
 - DWIN preamble
 - DWIN PPDU format
 - DWIN modulation
 - DWIN signal and data

- high reliable wireless channel for FA
- DWIN RF channel model
- DWIN channel resource allocation
- DWIN diversity
- 7. DWIN medium access control layer
 - time synchronization
 - discovery
 - association
 - traffic scheduling
 - preemption
- 8. DWIN management
 - network synchronization
 - network resource allocation
 - traffic management

Annex

Bibliography

A Preliminary Work Item Proposal (III)

- Time Plan
 - Aug. 2021 : presentation of a preliminary work item proposal, register a PWI
 - preparation of a Form-4 document and an initial WD text
 - Mar. 2022 : review stage 0 report and the initial WD text
 - initiate a NP ballot by Korean NB
 - Oct. 2022 : progress to WD stage, NP ballot comment resolution, update WD
 - initiate CD ballot
 - Aug. 2023 : progress to CD stage, CD ballot comment resolution, update CD
 - initiate DIS ballot
 - Mar. 2024 : progress to DIS stage, DIS ballot comment resolution, update DIS
 - initiate FDIS ballot or publish IS

Request WG1 Resolution

- Resolution 6.1.x Approval of PWI and Request for Contributions
 - SC 6 authorizes the Preliminary Work Item listed below.
 - SC 6 instructs its Secretariat to circulate the document below for study and comment prior to the next SC6 plenary meeting in March 2022.

Document	Designation	Title	Project Editors
WG1 Nxxxx	PWI-DWIN	Preliminary Work Item Proposal on Deterministic Wireless Industrial Network	Seong-Soon Joo