March, 1994
 DOC: IEEE P802.11-94/xxx

December, 2001
 IEEE P802.15-01/530r5

IEEE P802.15

Wireless Personal Area Networks

	Project
	IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

	Title
	01530r5P802-15_TG3-MAC-Security-Issues

	Date Submitted
	4 December 2001

	Source
	Gregg Rasor
Motorola
1500 Gateway Blvd

Boynton Beach, FL 33426

M/S 100
	Voice:
(561) 739-2952
Fax:
(561) 739-3175
E-mail:
Gregg.Rasor@motorola.com

	Re:
	Issue resolution of sections concerning privacy and security as detailed in Draft P802.15.3/D08

	Abstract
	This document contains proposed privacy and security elements for use with the 802.15.3 media access control layer and higher layers.

	Purpose
	[To describe an outline of security requirements for the 802.15.3 standard.]

	Notice
	This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Update the following sections as they relate to 802.15.3 security and privacy [ref: D08]:

Excerpted from 514r0:

1.1.4 Security/authentication issues

—69

—27

—28

—41

—101

—26

—29

—30

—31

—332

—233

—264

—302

The following list addresses these issues and other outstanding sections for Security and Privacy.

Note: If an associated DEV is not currently authenticated within the piconet, all commands other than the authentication, challenge, and (others required by James) requests to the PNC will be rejected by the PNC with a Not Authenticated result code.

Note: Use HMAC (see Austin minutes) to calculate and append to MPDUs and DEK to encrypt individual PPDUs.

5.6.2 Joining

PNC shall include the PSM. The PSM shall be hosted by the active PNC.

6.3.4 Authenticate

Steps:

DEV issues AUTH.request to PNC

PNC responds with AUTH.challenge to DEV

(DEV sends AUTH.challenge to PNC

PNC responds with AUTH.challengeresponse to DEV)

DEV responds with AUTH.challengeresponse to PNC

PNC responds with AUTH.confirm to DEV

DEV now allowed to issue any valid piconet command.

DEV issues DE-AUTH.request to PNC

PNC responds with DE-AUTH.cofirm

DEV no longer allowed to issue any piconet commands other than Authenticate and Challenge to the PNC.

Issue 26. - Comment: Authentication Process defined as above.

This mechanism supports the process of establishing an authentication relationship with a peer MAC entity.

Resolution: See following sub-elements for resolution.

Issue 27.

Resolution: DeviceID 6 bytes, AuthenticationKey is the public key of the requesting DEV using the mandatory AuthenticaionType. “AuthenticationType” should be cipher suite selection based on IEEE P1363: Standard Specifications for Public-Key Cryptography, et seq.. AuthenticationType –OID selections. AuthenticateFailureTimeout - 2 bytes. May need to be able to fragment this frame. Define how this is done in section 7. This updates Table 10 in D08.

xxx.a.1 MLME-AUTHENTICATE.request
This primitive instructs the MLME of an associated DEV to request authentication within a piconet from the security manager. The public-key object may be simply a public key, a public-key certificate or some other construct that communicates public-key related information.
MLME-AUTHENTICATE.request
(

DeviceID
DEVPublicKeyObjectLength,

DEVPublicKeyObject,

AuthenticateFailureTimeout

)

DEVPublicKeyObjectLength: Integer, 2 bytes, Specifies the length in bytes of the DEVPublicKeyObject.

DEVPublicKeyObject: Variable, as specified by the cipher suite in use, Specifies the public key and associated information in the format as defined by the cipher suite in use.

AuthenticateFailureTimeout: Integer, 2 bytes, Specifies the time interval allowed before the MLME returns a failure indication.

When Generated: When the DEV-host wishes to authenticate to the security manager it generates this message.
Effect: The MLME creates an authentication initialization command, which includes the public key and related information, and sends it to the security manager.
xxx.a.2 MLME-AUTHENTICATE.indication

This primitive reports the reception of an authentication initialization command from an associated DEV to the DEV-host of the security manager.
MLME-AUTHENTICATE.indication
(

DeviceID,

DEVPublicKeyObjectLength,

DEVPublicKeyObject

)

When Generated: Upon receiving an authentication initialization command, the security manager MLME generates this message to inform the DEV-host that an associated DEV wishes to be authenticated.

Effect: The DEV-host is informed of the request for authentication by the DEV. The DEV-host then should determine whether the public-key will be accepted and if it desires to allow the DEV to attempt to authenticate and, if so, it should generate an MLME-CHALLENGE.request message for the MLME.
xxx.a.3 MLME-AUTHENTICATE.response
This primitive initiates a response to an MLME-CHALLENGE.confirm received from the requesting MAC entity. The result code is dependent on whether the security manager DEV-host chooses to accept the DEV authentication or not.
MLME-AUTHENTICATE.response
(

DeviceID,

AuthenticationInfoLength,

AuthenticationInfo,
ResultCode

)

AuthenticationInfoLength: Integer, 2 bytes, Specifies the length in bytes of the AuthenticationInfo.
AuthenticationInfo: Variable, as specified by the cipher suite in use, Specifies the authentication information in the format as defined by the cipher suite in use.
ResultCode:
When Generated: A security manager DEV-host that receives an MLME-CHALLENGE.confirm from an associated DEV determines whether the device is authenticated and generates this message as a response.

Effect: The MLME should send an authentication confirmation command to the requesting DEV indicating whether or not the authentication has been approved by the DEV-host and including additional authentication information if it is needed.
xxx.a.4 MLME-AUTHENTICATE.confirm
This primitive reports the results of a key acceptance attempt with another DEV in the piconet.

MLME-AUTHENTICATE.confirm
(

DeviceID,

AuthenticationInfoLength,

AuthenticationInfo,

ResultCode

)

When Generated: When an MLME receives a public-key acceptance command from an associated DEV in response to a public-key transport command, the MLME creates an MLME- AUTHENTICATE.confirm message to inform the DEV-host of the result.
Effect: The DEV-host is informed of whether the public-key was accepted by the other DEV or not.

xxx.b.1 MLME-CHALLENGE.request
This primitive is used to initiate a public key authentication challenge to the DEV. It includes a public key challenge that is dependent on the cipher suite that is being used and the public key of the security manager.
MLME-CHALLENGE.request

(

DeviceID,
SecurityManagerPublicKeyObjectLength,

SecurityManagerPublicKeyObject,

PublicKeyChallengeLength,

PublicKeyChallenge,

AuthenticateFailureTimeout

)

SecurityManagerPublicKeyObjectLength: Integer, 2 bytes, Specifies the length in bytes of the SecurityManagerPublicKeyObject.

SecurityManagerPublicKeyObject: Variable, as specified by the cipher suite in use, Specifies the public key and associated information in the format as defined by the cipher suite in use.

PublicKeyChallengeLength: Integer, 2 bytes, Specifies the length in bytes of the PublicKeyChallenge.

PublicKeyChallenge: Variable, as specified by the cipher suite in use, Specifies the public-key challenge in the format as defined by the cipher suite in use.

When Generated: When the security manager DEV-host receives an MLME-AUTHENTICATE.indication and decides to allow the DEV to attempt to authenticate, it generates this message and sends it to the MLME.
Effect: The security manager MLME creates an authentication challenge command and sends it to the specified DEV.

xxx.b.2 MLME-CHALLENGE.indication
This primitive reports the reception of an authentication challenge command from the security manager in the piconet.

MLME-CHALLENGE.indication
(

DeviceID,

SecurityManagerPublicKeyObjectLength,

SecurityManagerPublicKeyObject,
PublicKeyChallengeLength,
PublicKeyChallenge

)

When Generated: When the MLME of the DEV receives an authentication challenge command, it generates this message and sends it to the DEV-host.
Effect: The DEV-host receives the challenge and if it accepts the security manager public key and wishes to continue with the challenge, it will create an MLME-CHALLENGE.response.
xxx.b.3 MLME-CHALLENGE.response
This primitive is used to continue the challenge-response protocol initiated by the security manager. The DEV-host creates this message after performing a public-key operation as determined by the cipher suite.
MLME-CHALLENGE.response
(

DeviceID,

PublicKeyProofLength,

PublicKeyProof
)

PublicKeyProofLength: Integer, 2 bytes, Specifies the length in bytes of the PublicKeyProof.

PublicKeyProof: Variable, as specified by the cipher suite in use, Specifies the public-key challenge in the format as defined by the cipher suite in use.

When Generated: When the DEV-host receives an MLME-CHALLENGE.indication and decides to continue to attempt to authenticate, it generates this message and sends it to the MLME.

Effect: The MLME creates an authentication response command and sends it to the security manager.

xxx.b.4 MLME-CHALLENGE.confirm
This primitive is used to pass to the DEV-host of the security manager the response of the DEV to the challenge sent by the security manager.
MLME-CHALLENGE.confirm

(

DeviceID,

PublicKeyProofLength,
PublicKeyProof,
ResultCode

)

ResultCode: Success or Request timed out
When Generated: When the security manager MLME receives an authentication response command or when the request times out, it generates this message and sends it to the DEV-host.

Effect: The security manager DEV-host receives the message and should then determine if it is satisfied with the proof and send an MLME-AUTHENTICATE.response intended for the specified DEV.
xxx.c.1 MLME-REQUEST-KEY.request

This primitive is used by a DEV to request the transmission of a key from the security manager. It includes the purpose of the key requested.
MLME-REQUEST-KEY.request
(

DeviceID,

KeyPurpose,

KeyRequestFailureTimeout
)

KeyPurpose: Integer, 2 bytes, Specifies the purpose that the key is intended to be used for as enumerated in the cipher suite list.

KeyRequestFailureTimeout: Integer, 2 bytes, Specifies the time interval allowed before the MLME returns a failure indication.

When Generated: If a DEV needs to obtain a key from the security manager, it generates this message.
Effect: The MLME generates a key request command and sends it to the security manager.
xxx.c.2 MLME-REQUEST-KEY.indicate

This primitive reports the request of a key from an associated DEV to the security manager.
MLME- REQUEST-KEY.indicate
(

DeviceID,

KeyPurpose

)

When Generated: When the security manager MLME receives a key request command, it generates this message to pass it on to the DEV-host.
Effect: The DEV-host receives the key request and should then check to see if the device is authorized to obtain the key with the proposed transport key and create an MLME-REQUEST-KEY.response.
xxx.c.3 MLME-REQUEST-KEY.response

This primitive is used by the security manager to respond to a key request from an associated DEV with either an encrypted version of the requested key or an indication that the key request was denied.

MLME- REQUEST-KEY.response
(

DeviceID,

KeyPurpose,

EncryptedKeyObjectLength,

EncryptedKeyObject,

ResultCode
)

KeyID: Integer, 6 bytes, Specifies a unique random ID chosen by the DEV to associate with the particular key.

EncryptedKeyObjectLength: Integer, 2 bytes, Specifies the length in bytes of the EncryptedKeyObject.

EncryptedKeyObject: Variable, as specified by the cipher suite in use, Specifies the public key and associated information in the format as defined by the cipher suite in use.
When Generated: After the security manager DEV-host has received an MLME-REQUEST-KEY.indication and determined whether the DEV is authorized to receive the requested key, the DEV-host generates this message.
Effect: The security manager MLME generates a key response command and sends it to the specified DEV.
xxx.c.4 MLME-REQUEST-KEY.confirm

This primitive reports the result of a key request and, if the request was accepted, the requested key in an encrypted format to the DEV-host of the DEV requesting the key.
MLME- REQUEST-KEY.confirm
(

DeviceID,

KeyPurpose,

EncryptedKeyObjectLength,

EncryptedKeyObject,

ResultCode

)
When Generated: When the MLME of the requesting DEV receives a key response command from the security manager or when the timeout has occurred, the MLME generates this message.
Effect: The DEV-host is informed of the result of the key request and, if successful, obtains the requested key.
xxx.d.1 MLME-DISTRIBUTE-KEY.request

This primitive is used by the security manager to distribute a key to an associated DEV. This message is nearly identical to the MLME-REQUEST-KEY.response, except that the security manager initiates the procedure.
MLME-DISTRIBUTE-KEY.request
(

DeviceID,

KeyPurpose,

EncryptedKeyObjectLength,

EncryptedKeyObject,

DistributeKeyFailureTimeout

)

DistributeKeyFailureTimeout: Integer, 2 bytes, Specifies the time interval allowed before the MLME returns a failure indication.

When Generated: If the security manager wishes to send a key to a specific DEV, the DEV-host may generate this message. This may occur directly following a successful authentication procedure.
Effect: The MLME receives the message and forwards it to the specified DEV in the form of a key distribution command.
xxx.d.2 MLME-DISTRIBUTE-KEY.indication

This primitive reports the transmission of a key from the security manager to the DEV.

MLME- DISTRIBUTE-KEY.indication
(

DeviceID,

KeyPurpose,

EncryptedKeyObjectLength,

EncryptedKeyObject
)

When Generated: When an MLME receives a key distribution command, it generates this message.
Effect: The DEV-host is informed of the key distribution message and, if usable, obtains the requested key and generates an MLME-DISTRIBUTE-KEY.response.

xxx.d.3 MLME-DISTRIBUTE-KEY.response
This primitive is used by a DEV to inform the security manager of the success or failure of a distribute key command.

MLME-DISTRIBUTE-KEY.response
(

DeviceID,

ResultCode
)

When Generated: After the DEV-host receives an MLME-DISTRIBUTE-KEY.indication, it determines whether it will accept the key or not and generates this message.

Effect: The MLME receives the message and creates a key distribution response command and sends it to the security manager.

xxx.d.4 MLME-DISTRIBUTE-KEY.confirm
This primitive reports to the DEV-host of the security manager whether the distributed key was accepted or not by the DEV.

MLME-DISTRIBUTE-KEY.confirm
(

DeviceID,

ResultCode

)

When Generated: When the MLME of the requesting DEV receives a key response command from the security manager or when the timeout has occurred, the MLME generates this message.
Effect: The DEV-host of the security manager is informed of the result of the key distribution process.
6.xxx Diagrams for MLME messages
Note that all of the tables that are being described below have the property that all the real processing and logic is happening at the SME (or higher) layer. The MAC layer in all cases is simply acting as a conduit for the messages between the DEV-SME and the PNC-SME. So, the directions of the arrows in all the diagrams should be about the same.
The following diagram should be created for message flow for authentication:

1. MLME-AUTHENTICATE.request (DEV-SME to DEV-MLME)
2. Authentication Initialization Command (DEV-MLME to PNC-MLME)
3. MLME-AUTHENTICATE.indication (PNC-MLME to PNC-SME)
4. MLME-CHALLENGE.request (PNC-SME to PNC-MLME)
5. Authentication Challenge Command (PNC-MLME to DEV-MLME)
6. MLME-CHALLENGE.indication (DEV-MLME to DEV-SME)
7. MLME-CHALLENGE.response (DEV-SME to DEV-MLME)
8. Authentication Response Command (DEV-MLME to PNC-MLME)
9. MLME-CHALLENGE.confirm (PNC-MLME to PNC-SME)
10. MLME-AUTHENTICATE.response (PNC-SME to PNC-MLME)
11. Authentication Confirmation Command (PNC-MLME to DEV-MLME)
12. MLME-AUTHENTICATE.confirm (DEV-MLME to DEV-SME)
The following diagram should be created for message flow for requesting a key:

1. MLME-REQUEST-KEY.request (DEV-SME to DEV-MLME)
2. Key Request Command (DEV-MLME to PNC-MLME)
3. MLME- REQUEST-KEY.indicate (PNC-MLME to PNC-SME)
4. MLME- REQUEST-KEY.response (PNC-SME to PNC-MLME)
5. Key Response Command (PNC-MLME to DEV-MLME)
6. MLME- REQUEST-KEY.confirm (DEV-MLME to DEV-SME)
The following diagram should be created for message flow for distributing a key:

1. MLME-DISTRIBUTE-KEY.request (PNC-SME to PNC-MLME)
2. Key Distribution Command (PNC-MLME to DEV-MLME)
3. MLME- DISTRIBUTE-KEY.indication (DEV-MLME to DEV-SME)
4. MLME-DISTRIBUTE-KEY.response (DEV-SME to DEV-MLME)
5. Key Distribution Response (DEV-MLME to PNC-MLME)
6. MLME-DISTRIBUTE-KEY.confirm (PNC-MLME to PNC-SME)
10.xxx Additional Text for MLME Element Types

The following section should be used as input to aid in the descriptions in section 10 of this document. Each type that is discussed here is used in the MLME messages defined in section 6. The interpretation of all of these objects is done by the SME or other entity outside the scope of this document and, as such, this document can only require the framework within which these objects should be interpreted.
Public-Key Security Objects

Various objects are defined in section 6 that serve a purpose for the entities that are performing the public-key operations. These messages are defined by the cipher suites and may have different contents and different purposes depending on the cipher suite in use when the protocol is implemented. Since the detailed meanings of these objects are outside of the scope of this document, we simply describe the purpose for their inclusion and explain some of the possible uses for these objects.
DEVPublicKeyObject: This object usually represents the public key of the entity that is requesting authentication along with additional information. The additional information is needed to assure that the public key can be trusted by the security manager. A typical example of a DEVPublicKeyObject would be a public key certificate, which includes information such as owner of the public key, uses for the public key, validity period of the public key, the public key itself and a signature from a certificate authority that may be used by the security manager to verify the validity of the public key. In situations where there is no common trusted certificate authority, the DEVPublicKeyObject may not include a signature and in situations where the key is already known by the security manager, the DEVPublicKeyObject may only include identifying information about the key.
SecurityManagerPublicKeyObject: This object usually represents the public key of the security manager along with additional information. A SecurityManagerPublicKeyObject may take on the same forms as a DEVPublicKeyObject, except that the key should be associated with the security manager instead of the authenticating DEV.
PublicKeyChallenge: The PublicKeyChallenge is the first piece of information in the authentication protocol specific to that particular authentication attempt. It usually serves the dual purpose of giving the DEV an opportunity to display knowledge of its private key (i.e. the challenge in a challenge-response protocol) and providing information to the DEV that can later be used to authenticate the security manager. Examples of contents of this message include an encrypted key, an encrypted and signed key, a Diffie-Hellman style key exchange message and/or a freshly generated random number (called a nonce).
PublicKeyProof: The PublicKeyProof is the piece of information in the authentication protocol that is sent by the DEV. It is usually used to demonstrate knowledge of the private key in response to the PublicKeyChallenge (i.e. the response in a challenge-response protocol) and it is also often used to transmit a challenge back to the security manager so that the security manager can demonstrate knowledge of its private key. Examples of contents of this message include a nonce with a symmetric MAC on it, a digital signature, an encrypted key, a Diffie-Hellman style key exchange message and/or a nonce.
AuthenticationInfo: This object serves as the last piece of information in the authentication protocol sent by the security manager. The two primary uses that this may be used for are transporting a symmetric key and providing authentication of the security manager to the DEV, although there may be no cryptographic data in AuthenticationInfo at all. Examples of possible contents of the AuthenticationInfo include a simple acknowledgment, a nonce with a symmetric MAC on it, a digital signature and/or an encrypted and signed (or MACed) key.
Timeouts

In order to save memory and processing effort, the security operations are generally assigned time limits.

AuthenticateFailureTimeout: For authentication, the time limit should be long enough to allow for the challenge-response protocol with the security manager to complete. It should be taken into account that the security manager may be processing multiple authentication requests simultaneously.
KeyRequestFailureTimeout: When a DEV wishes to obtain a key from the security manager, the time limit should be long enough to allow the security manager to receive the message, encrypt (and perhaps sign) the key and send it to the DEV.
DistributeKeyFailureTimeout: When the security manager wishes to be certain that a specific DEV has a given key, the time limit should be long enough to allow the DEV to receive the message, decrypt (and perhaps verify the signature on) the key and send a response back.

6.3.5 De-authenticate

Issues 30, 31.

This mechanism supports the process of invalidating an authentication relationship with the piconet.

This uses the existing prototypes in 6.3.5.1 MLME-DE-AUTHENTICATE.request and 6.3.5.2 MLME-DE-AUTHENTICATE.confirm. Authentication policy is part of Section 10, Security.

Resolution: leave as is. Policy to be defined in Section 10.
6.7.1.3 Security Services

Insert the relevant completed security policy from 489rX, pp. 6 et seq. in r2.

There needs to be some type of information about the current state of the piconet symmetric group encryption key, in the beacon possibly to accommodate power savings.

7.2.1 Frame control field

The frame control field consists of the following sub-fields: protocol version, ACK policy, frame type, pad octet, frame position, frag-start, frag-end, retry, Del-ACK request, SECurity and repeater. The format of the frame control field is illustrated in Figure 9.

[image: image1.png]Figure 9—Frame control field

Leave as is.

7.2.1.9 SEC field

The SEC field is one bit in length. It is set to 1 if the frame body field contains information that is encrypted. When the SEC bit is set to 1, the frame body field contains the encryption fields as defined in <TBD>.

When the SEC bit is set, the frame body shall be encrypted using the currently assigned data encryption key for the piconet.

Comment: what is meant by the “the frame body field contains the encryption fields?” Encryption field removed. Frame just contains encrypted data.
The <TBD>, I assume, is the security policy from Section 10.
7.3.4 Data frame format

7.4 Information elements

The information elements are listed in Table 65. Individual elements are described in the following sub-clauses.
[image: image2.png]Table 65—Information elements

Element ID Element

] Device ID

I =R
T Tommom |

Maximum supported time slots

Channel cha

Supported rates

T

‘Channel time allocation

Max CTAS

7.4.2 Piconet Sync Parms --
The reserved byte in figure 16 will renamed authentication version. Or, editor can use other available bits to provide this information. The authentication version indicates the version of authentication that is used in the piconet. If authentication is not required, this field shall be set to zero. Insert table:

0 – none required

1 – authentication required

2 – authentication and data encryption required

7.4.3 Capability information

The SEC bit is set to 1 if the DEV is capable of supporting encryption for its data streams. Otherwise SEC bit is set to 0.

[image: image3.png]ezt | s e [on [ws] o o]

e I o | o |

Figure 19—Capability field format

7.4.7 Security parameters element

Issue 101. Security Parms are TBD.

Issue 264. Clause is TBD.

	Octets: 1
	1
	Variable

	Element ID
	Length
	OID (cipher suite selector)

Resolution: Algorithm OID (object identifier) is 48 bytes and defined by IEEE P1363: Standard Specifications for Public-Key Cryptography.

7.5 Command types (Based on MLME definitions)
Related to 6.3.4 Authenticate
Issue 41 - define authentication frame type and structure.

Resolution: AuthenticationType is the OID, 48 bytes.

Define the frame types based on MLME requirements

7.5.2 Association request command format

Issue 70 - same disposition as above.

Issue 76 - same disposition as above.

Issue 277 - Comment: …that is described in TBD

Resolution: Eliminate challenge response placeholder in FIG. 29 and reference at, line 21, page 98 D08.
Only a DEV that wishes to associate with the PNC of an already existing piconet shall send this command.

The ACK policy shall always be set to request immediate acknowledgement.

The frame position, frag-start, frag-end, retry, Del-ACK request, SEC and Repeater sub-fields in frame control field of the MAC header in this command shall be set to zeros and shall be ignored upon reception.

The DA shall always be set to all-zero address, meant to indicate the PNCs address. The SA shall always be set 0xFE to indicate the association-address.

The PNID values is set to the PNID of the piconet to which the DEV is attempting to associate.
7.5.4 Association response command format

Resolution: Eliminate the challenge/response text element.

7.5.18 PNC handover

Do we need cipher suite info in this command?

Resolution: Since the new PNC knows the cipher suite from the security parameters element, this can probably stay as is.

7.5.22 Stream management

Not sure why SEC is in here at all.

Resolution: Eliminate references to security.
8.2 Associating or starting a piconet

See sub element clauses under 8.2.

8.2.3 PNC selection process

If security is required, then it is a complete disqualification of a candidate if not present. Does the existing policy implement this condition?

8.2.4 Authentication

Authentication is described in clause 10. This is relative to the selected cipher suite and security rules.

8.2.7 Coordination handover

Issue: On coordinator handover, the piconet security manager (PSM) function must move to the new PNC.

Resolution: If privacy is enabled, keying policy is in effect. Existing piconet members are not required to re-associate on coordinator handover.

And piconet security parameters for the piconet in that short time.

8.2.8 Broadcasting DEV information

Related to broadcasting DEVs public keys.

Issue 143: Does this mean that all the devices originally associated with the first AC now have to reassociate themselves with the new coordinator? Or does the new coordinator use the same PNID as the original coordinator? If it does reuse the PNID does this represent a security problem?

AD-AD=0 is always the PNC. New PNC will have a unique AD-AD other than zero. All PNC commands are sent to AD-AD=0. Association and Authentication information transferred to the new PNC.

Issue 332. …PNC handover if allowed by the TBD security policy. Coordination Handover is dependent upon a defined Security policy.

Issue 233. Need to add text describing how the PNC can review the capabilities of associating Devs and decide to perform PNC handover if the new device is more capable. Need to address Security Implications.

Resolution: Already finished except for the cross references to the security procedure which defines authentication. See previous comments in this matter. Authentication is defined in section 10.

Keep as is if security bit is not set.

Handover shall not occur unless the new PNC has been authenticated. Shall use mutual authentication.

If authenticate only – transfer occurs and all DEVs shall authenticate with the new PNC. Authentication information in the old PNC is not transferred to the new PNC. All DEVs shall authenticate with the new PNC within aAuthenticateTimeout or they shall be disassociated.

If authenticate and encryption –Old PNC exchanges transfer key with new PNC using Distribute-DEK to the new PNC. Old PNC HMACs and encrypts the DevInfo table and sends to new PNC. Old PNC HMACS and encrypts the Public Key records for the DEVs and sends to new PNC. Transfer occurs. New PNC shall issue a new KEK and DEK in the first superframe after its first beacon.

Figure 49 in D08 add Authenticated indication to Device information.

Add additional device record for AC SEC capable devices that holds the Public Key of the DEV.

10. Privacy and Security

The complete document is to be generated (completed) as determined by WG chair.

Submission
Page

D. Kawaguchi, Symbol Technologies
Submission
Page

Gregg Rasor, Motorola

