The xref format "(See 6.3.1.1 on Page 28)" is non standard.

The pulse shape specification seems to be incorrect because it shall produce an irregular waveform.

The mapping between the integer and the energy level shall be defined.

The mapping between the integer and the link quality level shall be defined.

Why is the phyMaxPacketSize so small? Is it really only 58 bytes for the 2.4 GHz phy? If so - why does the 900 MHz phy have a longer packet size?

The CCA mode 4 is not clear to me (sorry). What should happen if the PPDU length information is decoded? Does the CCA keep listening to the channel for max PPDU size?

Is CSMA/CCA mechanism different from CSMA/CA, CSMA-CA, or what is it?

There is currently no default or minimum required number of channels that must be supported. However, at least one channel must be supported.

The spec lists no restrictions on phyNumChannelsSupported. For example, must a compliant device support all channels within a given bar?

The 2.4 GHz PHY specifies a Transmit PSD mask, but the 868/915 PHY does not.
1. General comment regarding PHY chapter. Is there a reference to a test document that describes how various specifications are verified?

2. Should the Data Start-of-Packet delimiter be changed such that there is a hamming distance of 4 between it and the preamble?

3. Is this field bit-0 or bit-7 of PHY-Header-octet? What is the use of this bit? nowhere in this doc, except for the mentioning of this bit in 6.4.1.3.

4. what is the length of this field?

5. If this has to be a low-cost implementation, there has to be one simple, reliable scheme for CCA. How can an high end system support five PHY's?

6. I haven't seen any supporting evidence that the 802.15.4 devices will take less than 1% duty cycle? How was this derived? Please add justification.

7. What happens when a PD-Data request is done with a MPDU whose length makes the overall PHY-PacketSize greater than the phyMaxPacketSize?

8. What happens when the length of a received packet is greater than the phyMaxPacketSize?

9. We have a phyNumChannelsSupported in the PIB but this may not be enough since we have 2 PHY's!

10. Section 6.9 needs to be expanded. Not enough information

11. The description of the PIB entry phyMaxPacketSize is not quite worded correctly and is also restrictive for a 2.4GHz PHY implementation that supports LBT.

12. A sensitivity of -85 dBm is not good enough for the 868/928 PHY. The major reason for this device over the 2.4 GHz device is range. The e.

13. The limits for transmit PSD are unclear as to whether they are averages or peak limits.

14. what should be limits are stated as desired levels, eg adj chan rej = 0 dB

15. The method proposed for 868/928 has not been validated with published analyses or test results for sensitivity, BER vs interference, multipath.

16. The following verbage isn't strong enough:<CR><CR>The 802.15.4 devices have several characteristics that improves its coexistence with

17. what should be limits are stated as desired levels, eg adj chan rej = 0 dB
<table>
<thead>
<tr>
<th>#</th>
<th>CommentType</th>
<th>SC</th>
<th>Comment Status</th>
<th>Response Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>595</td>
<td>Phy TECH</td>
<td>8.5</td>
<td>D / W</td>
<td>Kinney, Patrick</td>
</tr>
<tr>
<td>596</td>
<td>Coexistence Team</td>
<td>00</td>
<td>R / W</td>
<td>Lansford, Jim</td>
</tr>
<tr>
<td>597</td>
<td>Coexistence Team</td>
<td>6.9</td>
<td>X / W</td>
<td>Liu, Shawn</td>
</tr>
<tr>
<td>600</td>
<td>Phy TECH</td>
<td>6.9</td>
<td>X / W</td>
<td>Maa, Yeong-Chang</td>
</tr>
<tr>
<td>604</td>
<td>Phy TECH</td>
<td>6.7.3.3</td>
<td>1 / A / W</td>
<td>Martin, Fred</td>
</tr>
<tr>
<td>610</td>
<td>Phy TECH</td>
<td>00</td>
<td>D / W</td>
<td>Moridi, Said</td>
</tr>
<tr>
<td>615</td>
<td>Phy TECH</td>
<td>Table 16</td>
<td>1 / A / W</td>
<td>Roberts, Richard</td>
</tr>
<tr>
<td>622</td>
<td>Phy TECH</td>
<td>Table 4</td>
<td>E / A / W</td>
<td>Shepherd, Nick</td>
</tr>
<tr>
<td>623</td>
<td>Phy TECH</td>
<td>Table 7</td>
<td>E / A / W</td>
<td>Shepherd, Nick</td>
</tr>
<tr>
<td>626</td>
<td>Phy TECH</td>
<td>Table 16</td>
<td>1 / A / W</td>
<td>Shepherd, Nick</td>
</tr>
<tr>
<td>628</td>
<td>Phy TECH</td>
<td>8.10</td>
<td>R / W</td>
<td>Shepherd, Nick</td>
</tr>
</tbody>
</table>

Comment Status: X/received D/dispatched for consideration A/accepted R/rejected
Response Status: O/open W/written C/closed U/unsatisfied Z/withdrawn

Power shutback is required for this standard but is not addressed as to when it should be used or not used. Specifically: "A compliant transm
This specification describes a physical layer, at the RF interface, is not interoperable, and does not coexist with other IEEE adopted or r
The section of coexistence for 802.15.4 does not address all other IEEE devices using 2.4 GHz band, such as 802.15.1, 802.15.3. Also it on
The section of coexistence for 802.15.4 does not address all other IEEE devices using 2.4 GHz band, such as 802.15.1, 802.15.3. Also it on
Spec is too tight, making LO noise and phase modulator accuracy into difficult design tasks. The spec could be relaxed to as much as 40%
The range of the 2.4 PHY (around 10m) seems too short for applications like home automation. This will prevent the 2.4 GHz (the only glob
In description of the phyNumChannelsSupported
What is the algorithm for deriving the value of ppduLinkQuality? <CR> Is "0" good or bad?
What is the algorithm for defining the value of Energy Level? <CR> Is "0" high or low? <CR> How do this figure relate to the energy
phyNumChannelsSupported: the description for this is not complete. For instance, a value of 1 indicates that, presumably, the PHY can han
This section is very complex for a lightweight implementation.